RUS  ENG
Full version
PEOPLE

Malakhaltsev Mikhail Armenovich

Publications in Math-Net.Ru

  1. Infinitesimal Ricci flows of minimal surfaces in the three-dimensional Euclidean space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 10,  29–39
  2. Differential complex associated to closed differential forms of nonconstant rank

    Lobachevskii J. Math., 23 (2006),  183–192
  3. A bundle of local Hamiltonians on a symplectic manifold with Martinet singularities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 11,  45–52
  4. Infinitesimal deformations of a symplectic structure with singularities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 11,  42–50
  5. Foliations with leaf structures

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 73 (2002),  65–102
  6. The Lie derivative and cohomology of $G$-structures

    Lobachevskii J. Math., 3 (1999),  197–200
  7. Godbillion–Vey classes for a one-dimensional manifold over a local algebra

    Tr. Geom. Semin., 23 (1997),  65–76
  8. $(X,G)$-foliations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 7,  55–65
  9. Structures of a manifold over the algebra of dual numbers on a torus

    Tr. Geom. Semin., 22 (1994),  47–62
  10. A class of manifolds over the algebra of dual numbers

    Tr. Geom. Semin., 21 (1991),  70–79
  11. An analogue of Dolbeault cohomology for varieties over the algebra of dual numbers

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 11,  82–84
  12. Invariant connections on fiber spaces, and affinor bundles

    Tr. Geom. Semin., 18 (1988),  32–43
  13. $L$-geodesic curves and Egiazaryan's projection of a connection

    Dokl. Akad. Nauk SSSR, 288:3 (1986),  543–546
  14. Tensors preserved under $L$-projective transformations and in the projection of connections in the sense of Egiazaryan

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 7,  82–84
  15. The intrinsic geometry of the Nevifel'd connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 2,  67–69
  16. Specific properties of the curvature tensor in a space of affine connection $A_3$

    Tr. Geom. Semin., 16 (1984),  65–69

  17. A. P. Norden — an outstanding Soviet scientist and organizer of science (to the 120th anniversary of his birth)

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 7,  3–8
  18. The evolution of hydromechamics in Chebotarev Research Institute of Mathematics and Mechamics, Kazan State University. The report at solemn meeting devoted to 200-th anniversary of KSU and 70-th anniversary of NIIMM, September 28-th, 2004

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 147:1 (2005),  5–15


© Steklov Math. Inst. of RAS, 2026