|
|
Publications in Math-Net.Ru
-
Infinitesimal Ricci flows of minimal surfaces in the three-dimensional Euclidean space
Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 10, 29–39
-
Differential complex associated to closed differential forms of nonconstant rank
Lobachevskii J. Math., 23 (2006), 183–192
-
A bundle of local Hamiltonians on a symplectic manifold with Martinet singularities
Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 11, 45–52
-
Infinitesimal deformations of a symplectic structure with singularities
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 11, 42–50
-
Foliations with leaf structures
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 73 (2002), 65–102
-
The Lie derivative and cohomology of $G$-structures
Lobachevskii J. Math., 3 (1999), 197–200
-
Godbillion–Vey classes for a one-dimensional manifold over a local algebra
Tr. Geom. Semin., 23 (1997), 65–76
-
$(X,G)$-foliations
Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 7, 55–65
-
Structures of a manifold over the algebra of dual numbers on a torus
Tr. Geom. Semin., 22 (1994), 47–62
-
A class of manifolds over the algebra of dual numbers
Tr. Geom. Semin., 21 (1991), 70–79
-
An analogue of Dolbeault cohomology for varieties over the algebra of dual numbers
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 11, 82–84
-
Invariant connections on fiber spaces, and affinor bundles
Tr. Geom. Semin., 18 (1988), 32–43
-
$L$-geodesic curves and Egiazaryan's projection of a connection
Dokl. Akad. Nauk SSSR, 288:3 (1986), 543–546
-
Tensors preserved under $L$-projective transformations and in the projection of connections in the sense of Egiazaryan
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 7, 82–84
-
The intrinsic geometry of the Nevifel'd connection
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 2, 67–69
-
Specific properties of the curvature tensor in a space of affine connection $A_3$
Tr. Geom. Semin., 16 (1984), 65–69
-
A. P. Norden — an outstanding Soviet scientist and organizer of science (to the 120th anniversary of his birth)
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 7, 3–8
-
The evolution of hydromechamics in Chebotarev Research Institute of Mathematics and Mechamics, Kazan State University. The report at solemn meeting devoted to 200-th anniversary of KSU and 70-th anniversary of NIIMM, September 28-th, 2004
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 147:1 (2005), 5–15
© , 2026