RUS  ENG
Full version
PEOPLE

Kurochkin Sergey Vladimirovich

Publications in Math-Net.Ru

  1. Asymptotics of optimal investment behavior under a risk process with two-sided jumps

    Izv. Saratov Univ. Math. Mech. Inform., 25:3 (2025),  316–324
  2. Singular nonlinear problems for phase trajectories of some self-similar solutions of boundary layer equations: correct formulation, analysis, and calculations

    Zh. Vychisl. Mat. Mat. Fiz., 63:2 (2023),  245–261
  3. Optimal control of investment in a collective pension insurance model: study of singular nonlinear problems for integro-differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 62:9 (2022),  1473–1490
  4. Singular nonlinear problems for self-similar solutions of boundary-layer equations with zero pressure gradient: analysis and numerical solution

    Zh. Vychisl. Mat. Mat. Fiz., 61:10 (2021),  1619–1645
  5. Neural network with smooth activation functions and without bottlenecks is almost surely a Morse function

    Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021),  1172–1178
  6. Absence of bottlenecks in a neural network determines its generic functional properties

    Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020),  74–77
  7. Detection of the homotopy type of an object using differential invariants of an approximating map

    Computer Optics, 43:4 (2019),  611–617
  8. Existence conditions of negative eigenvalues in the regular Sturm–Liouville boundary value problem and explicit expressions for their number

    Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018),  2014–2025
  9. Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations

    Zh. Vychisl. Mat. Mat. Fiz., 56:1 (2016),  47–98
  10. Calculation of the spheroidal functions of the first kind for complex values of the argument and parameters

    Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  798–806
  11. Singular initial-value and boundary-value problems for integrodifferential equations in dynamical insurance models with investments

    CMFD, 53 (2014),  5–29
  12. Indexing of eigenvalues of boundary value problems for Hamiltonian systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  425–429
  13. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    Zh. Vychisl. Mat. Mat. Fiz., 52:10 (2012),  1812–1846
  14. Calculation of solutions to the Mathieu equation and of related quantities

    Zh. Vychisl. Mat. Mat. Fiz., 47:3 (2007),  414–423
  15. Highly accurate calculation of radial spheroidal functions

    Zh. Vychisl. Mat. Mat. Fiz., 46:6 (2006),  996–1001
  16. Highly accurate calculation of agular spheroidal functions

    Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  12–17
  17. Analytic–numerical investigation of the nonlinear boundary value problem for a superconducting plate in a magnetic field

    Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1651–1676
  18. The investigation of charged topological soliton stability in the system of two interacting scalar fields

    Zh. Vychisl. Mat. Mat. Fiz., 44:11 (2004),  2069–2083
  19. A method of detection of instability and for determination of unstable eigenvalues in the Orr–Sommerfeld problem

    Zh. Vychisl. Mat. Mat. Fiz., 41:1 (2001),  86–94
  20. On stability of differential sweep methods

    Zh. Vychisl. Mat. Mat. Fiz., 40:11 (2000),  1611–1614
  21. Numerical determination of a boundary condition near a singularity

    Zh. Vychisl. Mat. Mat. Fiz., 37:5 (1997),  543–552
  22. Topological methods for the localization of eigenvalues of boundary value problems

    Zh. Vychisl. Mat. Mat. Fiz., 35:8 (1995),  1165–1174
  23. A method for finding the eigenvalues of a nonselfadjoint boundary value problem

    Dokl. Akad. Nauk, 336:4 (1994),  442–443
  24. Singular boundary-value problems for linear Hamiltonian systems

    Zh. Vychisl. Mat. Mat. Fiz., 34:1 (1994),  58–67
  25. Numerical investigation of axisymmetric free oscillations in a vacuum and excitation in a compressible medium of a prolate cylindrical shell with hemispherical ends

    Zh. Vychisl. Mat. Mat. Fiz., 33:10 (1993),  1550–1580
  26. The discrete character of the spectrum of a linear two-point boundary-value problem with constraints at singular points

    Zh. Vychisl. Mat. Mat. Fiz., 32:12 (1992),  1995–2000
  27. Some estimates for the eigenvalues of a perturbation operator

    Zh. Vychisl. Mat. Mat. Fiz., 27:11 (1987),  1736–1739
  28. Properties of Banach spaces related to projectivity

    Funktsional. Anal. i Prilozhen., 20:1 (1986),  75–76
  29. The cardinality of an $F$-space

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 5,  51–52


© Steklov Math. Inst. of RAS, 2026