RUS  ENG
Full version
PEOPLE

Belokolos Eugene Dmitrievich

Publications in Math-Net.Ru

  1. Mendeleev Table: a Proof of Madelung Rule and Atomic Tietz Potential

    SIGMA, 13 (2017), 038, 15 pp.
  2. Wannier Functions for Quasiperiodic Finite-Gap Potentials

    TMF, 144:2 (2005),  234–256
  3. The integrability and the structure of atom

    Mat. Fiz. Anal. Geom., 9:3 (2002),  339–351
  4. General formulae for solutions of initial and boundary value problems for the sine-Gordon equation

    TMF, 103:3 (1995),  358–367
  5. Verdier elliptic solitons and the Weierstrass theory of reduction

    Funktsional. Anal. i Prilozhen., 23:1 (1989),  57–58
  6. Isospectral deformations of elliptic potentials

    Uspekhi Mat. Nauk, 44:5(269) (1989),  155–156
  7. Expression of parameters of solutions of algebraically integrable nonlinear equations in terms of theta constants

    Funktsional. Anal. i Prilozhen., 21:1 (1987),  70–71
  8. Electron-phonon coupling constant in a single-gap conductor

    TMF, 71:2 (1987),  313–317
  9. Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations

    Uspekhi Mat. Nauk, 41:2(248) (1986),  3–42
  10. On the relation between the approximating Hamiltonian method and the finite-zone integration method

    Dokl. Akad. Nauk SSSR, 275:3 (1984),  580–582
  11. Classification of quasione-dimensional Peierls–Frehlich conductors

    TMF, 58:2 (1984),  279–291
  12. Connection between the approximating Hamiltonian method and theta-function integration

    TMF, 58:1 (1984),  61–71
  13. Generalized Lamb ansatz

    TMF, 53:2 (1982),  271–282
  14. Peierls-Fröhlich problem and potentials with finite number of gaps. II

    TMF, 48:1 (1981),  60–69
  15. Peierls-Fröhlich problem and potentials with finite number of gaps. I

    TMF, 45:2 (1980),  268–275
  16. Quantum particle in a one-dimensional deformed lattice. Dependence of the energy on the quasimomentum

    TMF, 26:1 (1976),  35–41
  17. Quantum particle in a one-dimensional deformed lattice. Estimates of the gaps in the spectrum

    TMF, 25:3 (1975),  344–357
  18. Irreducible representations of the translational symmetry operators of the Hamiltonian of a bloch electron in a magnetic field

    TMF, 7:1 (1971),  61–71


© Steklov Math. Inst. of RAS, 2026