|
|
Publications in Math-Net.Ru
-
Mendeleev Table: a Proof of Madelung Rule and Atomic Tietz Potential
SIGMA, 13 (2017), 038, 15 pp.
-
Wannier Functions for Quasiperiodic Finite-Gap Potentials
TMF, 144:2 (2005), 234–256
-
The integrability and the structure of atom
Mat. Fiz. Anal. Geom., 9:3 (2002), 339–351
-
General formulae for solutions of initial and boundary value problems for the sine-Gordon equation
TMF, 103:3 (1995), 358–367
-
Verdier elliptic solitons and the Weierstrass theory of reduction
Funktsional. Anal. i Prilozhen., 23:1 (1989), 57–58
-
Isospectral deformations of elliptic potentials
Uspekhi Mat. Nauk, 44:5(269) (1989), 155–156
-
Expression of parameters of solutions of algebraically integrable nonlinear equations in terms of theta constants
Funktsional. Anal. i Prilozhen., 21:1 (1987), 70–71
-
Electron-phonon coupling constant in a single-gap conductor
TMF, 71:2 (1987), 313–317
-
Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations
Uspekhi Mat. Nauk, 41:2(248) (1986), 3–42
-
On the relation between the approximating Hamiltonian method and
the finite-zone integration method
Dokl. Akad. Nauk SSSR, 275:3 (1984), 580–582
-
Classification of quasione-dimensional Peierls–Frehlich conductors
TMF, 58:2 (1984), 279–291
-
Connection between the approximating Hamiltonian method and theta-function integration
TMF, 58:1 (1984), 61–71
-
Generalized Lamb ansatz
TMF, 53:2 (1982), 271–282
-
Peierls-Fröhlich problem and potentials with finite number of gaps. II
TMF, 48:1 (1981), 60–69
-
Peierls-Fröhlich problem and potentials with finite number of gaps. I
TMF, 45:2 (1980), 268–275
-
Quantum particle in a one-dimensional deformed lattice. Dependence of the energy on the quasimomentum
TMF, 26:1 (1976), 35–41
-
Quantum particle in a one-dimensional deformed lattice. Estimates of the gaps in the spectrum
TMF, 25:3 (1975), 344–357
-
Irreducible representations of the translational symmetry operators of the Hamiltonian of a bloch electron in a magnetic field
TMF, 7:1 (1971), 61–71
© , 2026