RUS  ENG
Full version
PEOPLE

Pavlenko Vyacheslav Nikolaevich

Publications in Math-Net.Ru

  1. Weak semiregular solutions to the Dirichlet problem for quasilinear elliptic equations in divergence form with discontinuous weak nonlinearities

    Mat. Sb., 216:6 (2025),  77–93
  2. On the refinement of an approximate solution of a one-dimensional singularly perturbed model problem with discontinuous nonlinearity

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 18:2 (2025),  31–41
  3. Semi-regular solutions of integral equations with discontinuous nonlinearities

    Mat. Zametki, 116:1 (2024),  109–121
  4. The asymptotic behavior of the approximate solution of a one-dimensional singularly perturbed Goldshtik problem

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:4 (2023),  14–20
  5. Arlen Mikhaylovich Il'in. 90 years since the birth

    Chelyab. Fiz.-Mat. Zh., 7:2 (2022),  135–138
  6. One class of quasilinear elliptic type equations with discontinuous nonlinearities

    Izv. RAN. Ser. Mat., 86:6 (2022),  143–160
  7. Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth

    Mat. Sb., 213:7 (2022),  121–138
  8. About a problem on conductor heating

    Chelyab. Fiz.-Mat. Zh., 6:3 (2021),  299–311
  9. Positive solutions of superlinear elliptic problems with discontinuous non-linearities

    Izv. RAN. Ser. Mat., 85:2 (2021),  95–112
  10. Existence of Semiregular Solutions of Elliptic Systems with Discontinuous Nonlinearities

    Mat. Zametki, 110:2 (2021),  239–257
  11. Variational method for elliptic systems with discontinuous nonlinearities

    Mat. Sb., 212:5 (2021),  133–152
  12. On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity

    Izv. RAN. Ser. Mat., 84:3 (2020),  168–184
  13. Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity

    Chelyab. Fiz.-Mat. Zh., 4:3 (2019),  323–332
  14. Sturm — Liouville problem for an equation with a discontinuous nonlinearity

    Chelyab. Fiz.-Mat. Zh., 4:2 (2019),  142–154
  15. Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity

    Mat. Sb., 210:7 (2019),  145–170
  16. Elenbaas Problem of Electric Arc Discharge

    Mat. Zametki, 103:1 (2018),  92–100
  17. Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance

    Mat. Zametki, 101:2 (2017),  247–261
  18. Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides

    Mat. Sb., 208:1 (2017),  165–182
  19. Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities

    Sibirsk. Mat. Zh., 58:2 (2017),  375–385
  20. Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity

    Mat. Tr., 19:1 (2016),  91–105
  21. The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities

    Mat. Sb., 206:9 (2015),  121–138
  22. Periodic solutions of the vibrating string equation with Neumann and Dirichlet boundary conditions and a discontinuous nonlinearity

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012),  199–204
  23. Periodic solutions of the telegraph equation with a discontinuous nonlinearity

    Ufimsk. Mat. Zh., 4:2 (2012),  74–79
  24. Periodic solutions of parabolic equations with discontinuous nonlinearities

    Vestnik Chelyabinsk. Gos. Univ., 2011, no. 14,  94–101
  25. Periodic solutions of parabolic equations with homogeneus bondary Dirichlet conditions time depent coefficients and discontinuous nonlinearity

    Vestnik Chelyabinsk. Gos. Univ., 2011, no. 13,  20–26
  26. The resonance elliptic boundary value problem with discontinuous nonlinearity of linear growth

    Vestnik Chelyabinsk. Gos. Univ., 2010, no. 12,  43–48
  27. Parabolic type equations with discontinuous nonlinearity

    Vestnik Chelyabinsk. Gos. Univ., 2008, no. 10,  49–53
  28. Resonance elliptic variational inequalities with discontinuous nonlinearities

    Differ. Uravn., 42:1 (2006),  120–125
  29. Proper solutions of elliptic boundary-valus problems with discontinuous nonlinearities

    Algebra i Analiz, 17:3 (2005),  124–138
  30. Strongly resonance elliptic variational inequalities with discontinuous nonlinearities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 7,  49–56
  31. Approximation of boundary value problems of elliptic type with a spectral parameter and a discontinuous nonlinearity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 4,  49–55
  32. Approximation of the resonance boundary-value problems of elliptic type with a discontinuous nonlinearity

    Sibirsk. Mat. Zh., 46:1 (2005),  139–148
  33. Регуляризация для уравнений с разрывными некоэрцитивными операторами

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 9,  111–123
  34. Аппроксимация краевых задач эллиптического типа с разрывной нелинейностью

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 7,  89–98
  35. Method of Upper and Lower Solutions for Parabolic-Type Equations with Discontinuous Nonlinearities

    Differ. Uravn., 38:4 (2002),  499–504
  36. Управление эллиптическими резонансными системами с разрывными нелинейностями

    Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6,  147–154
  37. Задача Дирихле для уравнения Лапласа с разрывной нелинейностью без условия Ландесмана–Лазера

    Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6,  120–126
  38. О существовании полуоси положительных собственных значений для уравнений с разрывными операторами

    Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6,  114–119
  39. Теоремы существования для уравнений с некоэрцитивными разрывными операторами

    Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6,  104–113
  40. Resonance boundary value problems for elliptic-type equations with discontinuous nonlinearities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 5,  43–58
  41. Existence of a ray of eigenvalues for equations with discontinuous operators

    Sibirsk. Mat. Zh., 42:4 (2001),  911–919
  42. Управление распределенными системами эллиптического типа с разрывными нелинейностями

    Vestnik Chelyabinsk. Gos. Univ., 1999, no. 5,  56–67
  43. The method of upper and lower solutions for elliptic-type equations with discontinuous nonlinearities

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 11,  69–76
  44. Control of distributed systems of elliptic type with discontinuous nonlinearities

    Differ. Uravn., 31:9 (1995),  1586–1587
  45. Вариационный метод для уравнений с разрывными операторами

    Vestnik Chelyabinsk. Gos. Univ., 1994, no. 2,  87–95
  46. The method of monotone operators in problems of the control of distributed systems of elliptic type with discontinuous nonlinearities

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 8,  49–54
  47. On the existence of semiregular solutions of the first boundary value problem for an equation of parabolic type with a discontinuous nonmonotone nonlinearity

    Differ. Uravn., 27:3 (1991),  520–526
  48. The method of monotone operators for equations with discontinuous nonlinearities

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 6,  38–45
  49. Эллиптические вариационные неравенства с разрывными полумонотонными операторами

    Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1,  29–37
  50. Existence theorems for elliptic variational inequalities with quasipotential operators

    Differ. Uravn., 24:8 (1988),  1397–1402
  51. On the solvability of some nonlinear equations with discontinuous operators

    Dokl. Akad. Nauk SSSR, 204:6 (1972),  1320–1323

  52. Владимир Евгеньевич Федоров. К пятидесятилетию со дня рождения

    Chelyab. Fiz.-Mat. Zh., 7:1 (2022),  5–10
  53. Arlen Mikhaylovich Il’in. Towards 85th birthday

    Chelyab. Fiz.-Mat. Zh., 2:1 (2017),  5–9
  54. Valentin Fedorovich Kuropatenko (1933–2017)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017),  151–152


© Steklov Math. Inst. of RAS, 2026