RUS  ENG
Full version
PEOPLE

Pyvovarchyk Vyacheslav Nikolaevich

Publications in Math-Net.Ru

  1. Ambarzumian's Theorem for a Sturm–Liouville Boundary Value Problem on a Star-Shaped Graph

    Funktsional. Anal. i Prilozhen., 39:2 (2005),  78–81
  2. A Sturm–Liouville Inverse Spectral Problem with Boundary Conditions Depending on the Spectral Parameter

    Funktsional. Anal. i Prilozhen., 36:4 (2002),  74–77
  3. Reconstruction of the Potential of the Sturm–Liouville Equation from Three Spectra of Boundary Value Problems

    Funktsional. Anal. i Prilozhen., 33:3 (1999),  87–90
  4. On the Spectra of Small Vibrations of a String with Viscous Friction at One End

    Funktsional. Anal. i Prilozhen., 32:1 (1998),  78–81
  5. Spectral Analysis of the Regge Problem with Parameters

    Funktsional. Anal. i Prilozhen., 31:1 (1997),  70–74
  6. Necessary conditions for gyroscopic stabilization in a problem of mechanics

    Mat. Zametki, 53:6 (1993),  89–96
  7. The sufficient condition for instability of the convective motion of a liquid in an open vessel

    Zh. Vychisl. Mat. Mat. Fiz., 33:1 (1993),  101–118
  8. Sufficient conditions for a weakly damped pencil to have a simple spectrum

    Sibirsk. Mat. Zh., 33:6 (1992),  201–204
  9. On the total algebraic multiplicity of the spectrum in the right half-plane for a class of quadratic operator pencils

    Algebra i Analiz, 3:2 (1991),  223–230
  10. Polynomial operator pencils connected with problems of mechanics

    Funktsional. Anal. i Prilozhen., 25:4 (1991),  62–64
  11. A spectral problem that is connected with an equation of viscous sound

    Differ. Uravn., 26:9 (1990),  1536–1541
  12. Closedness of the approximate spectrum of a polynomial operator pencil

    Mat. Zametki, 47:6 (1990),  147–148
  13. The discrete spectrum of a boundary value problem

    Sibirsk. Mat. Zh., 31:5 (1990),  182–186
  14. Eigenvalues of a certain quadratic pencil of operators

    Funktsional. Anal. i Prilozhen., 23:1 (1989),  80–81
  15. The spectrum of quadratic operator pencils in the right half-plane

    Mat. Zametki, 45:6 (1989),  101–103
  16. On the number of eigenvalues of the Sturm–Liouville problem on the semiaxis with a potential that is linear with respect to the parameter

    Differ. Uravn., 24:4 (1988),  705–708
  17. The discrete spectrum of a problem connected with wave propagation in an inhomogeneous medium with viscous friction

    Differ. Uravn., 23:9 (1987),  1533–1538
  18. A boundary value problem connected with oscillations of an elastic rod with internal and external friction

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 3,  68–71


© Steklov Math. Inst. of RAS, 2026