RUS  ENG
Full version
PEOPLE

Tarasyev Alexander Mikhailovich

Publications in Math-Net.Ru

  1. The growth model with a logistic hazard rate of the resource exhaustion

    Mat. Teor. Igr Pril., 17:4 (2025),  81–94
  2. Equilibrium trajectories for control systems with heterogeneous dynamics

    Ural Math. J., 11:2 (2025),  144–157
  3. Concerning one supplement to unification method of N.N. Krasovskii in differential games theory

    Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024),  65–71
  4. Minimax differential game with a fixed end moment

    Mat. Teor. Igr Pril., 16:3 (2024),  77–112
  5. Trajectories of dynamic equilibrium and replicator dynamics in coordination games

    Ural Math. J., 10:2 (2024),  92–106
  6. Game Problem of Target Approach for Nonlinear Control System

    Mat. Teor. Igr Pril., 15:2 (2023),  122–139
  7. Analisys of a growth model with a production CES-function

    Mat. Teor. Igr Pril., 14:4 (2022),  96–114
  8. Mechanism for shifting Nash equilibrium trajectories to cooperative Pareto solutions in dynamic bimatrix games

    Contributions to Game Theory and Management, 13 (2020),  218–243
  9. An estimate of a smooth approximation of the production function for integrtaing Hamiltonian systems

    Mat. Teor. Igr Pril., 12:1 (2020),  91–115
  10. Numerical methods for construction of value functions in optimal control problems on an infinite horizon

    Izv. IMI UdGU, 53 (2019),  15–26
  11. Estimate for the Accuracy of a Backward Procedure for the Hamilton–Jacobi Equation in an Infinite-Horizon Optimal Control Problem

    Trudy Mat. Inst. Steklova, 304 (2019),  123–136
  12. Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018),  27–39
  13. Asymptotics of value function in models of economic growth

    Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018),  605–616
  14. Stability properties of the value function in an infinite horizon optimal control problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:1 (2017),  43–56
  15. Asymptotic behavior of solutions in dynamical bimatrix games with discounted indices

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:2 (2017),  193–209
  16. Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints

    Zh. Vychisl. Mat. Mat. Fiz., 57:5 (2017),  768–782
  17. Predictive trajectories of economic development under structural changes

    Mat. Teor. Igr Pril., 8:3 (2016),  34–66
  18. Equilibrium trajectories in dynamical bimatrix games with average integral payoff functionals

    Mat. Teor. Igr Pril., 8:2 (2016),  58–90
  19. Some facts about the Ramsey model

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  160–168
  20. Properties of the value function in optimal control problems with infinite horizon

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:1 (2016),  3–14
  21. Optimal control for proportional economic growth

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015),  115–133
  22. Proportional economic growth under conditions of limited natural resources

    Trudy Mat. Inst. Steklova, 291 (2015),  138–156
  23. Optimal trajectory construction by integration of Hamiltonian dynamics in models of economic growth under resource constraints

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  258–276
  24. Hamilton–Jacobi equations in evolutionary games

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:3 (2014),  114–131
  25. Stabilizing the Hamiltonian system for constructing optimal trajectories

    Trudy Mat. Inst. Steklova, 277 (2012),  257–274
  26. Decomposition algorithm of searching equilibria in the dynamical game

    Mat. Teor. Igr Pril., 3:4 (2011),  49–88
  27. Influence of production function parameters on the solution and value function in optimal control problem

    Mat. Teor. Igr Pril., 3:3 (2011),  85–115
  28. Nonlinear stabilizer constructing for two-sector economic growth model

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  297–307
  29. Construction of a regulator for the Hamiltonian system in a two-sector economic growth model

    Trudy Mat. Inst. Steklova, 271 (2010),  278–298
  30. Search of maximum points for a vector criterion based on decomposition properties

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  167–182
  31. Construction of nonlinear regulators in economic growth models

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009),  127–138
  32. Properties of Hamiltonian Systems in the Pontryagin Maximum Principle for Economic Growth Problems

    Trudy Mat. Inst. Steklova, 262 (2008),  127–145
  33. Optimization of the stopping time in multilevel dynamic systems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  63–64
  34. Dynamic optimization of investments in the economic growth models

    Avtomat. i Telemekh., 2007, no. 10,  38–52
  35. The Pontryagin Maximum Principle and Transversality Conditions for an Optimal Control Problem with Infinite Time Interval

    Trudy Mat. Inst. Steklova, 233 (2001),  71–88
  36. Constructions of the differential game theory for solving the Hamilton–Jacobi equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 6:2 (2000),  320–336
  37. A game model of negotiations and market equilibria

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 61 (1999),  15–32
  38. On construction of positional absorption set in conflict control problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 1 (1992),  160–177
  39. Conjugate derivatives of the value function of a differential game

    Dokl. Akad. Nauk SSSR, 283:3 (1985),  559–564

  40. In memory of Arkady Viktorovich Kryazhimskiy (1949-2014)

    Ural Math. J., 2:2 (2016),  3–15


© Steklov Math. Inst. of RAS, 2026