RUS  ENG
Full version
PEOPLE

Serovaĭskiĭ Semen Yakovlevich

Publications in Math-Net.Ru

  1. Optimal Control of Singular Stationary Systems with Phase Constraints and State Variation

    Mat. Zametki, 97:5 (2015),  761–766
  2. An optimal control problem for a nonlinear elliptic equation with a phase constraint and state variation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 9,  81–86
  3. Approximation Methods in Optimal Control Problems for Nonlinear Infinite-Dimensional Systems

    Mat. Zametki, 94:4 (2013),  600–619
  4. Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control

    Mat. Zametki, 93:4 (2013),  586–603
  5. Elements of the theory and methods of parametric regulation of national economy's evolution using discrete dynamic stochastic models

    Avtomat. i Telemekh., 2012, no. 7,  55–66
  6. The necessary optimality conditions for a nonlinear stationary system whose state functional is not differentiable with respect to the control

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 6,  32–46
  7. Differentiation of operators and optimality conditions in category interpretation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2,  66–76
  8. Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a solution of the boundary-value problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 1,  76–83
  9. Sequential differentiation and its applications in optimal control problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 7,  45–56
  10. Sequential differentiation in nonsmooth infinite-dimensional extremal problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 1,  48–62
  11. Sequential derivatives of operators and their applications in nonsmooth problems of optimal control

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 12,  75–87
  12. Optimal control in nonlinear infinite-dimensional systems with nondifferentiability of two types

    Mat. Zametki, 80:6 (2006),  885–901
  13. A control problem in coefficients and an extended derivative with respect to a convex set

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 12,  46–55
  14. Optimal control for a singular equation with a nonsmooth operator and an isoperimetric condition

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 12,  58–65
  15. An approximate solution of an optimal control problem for a singular equation of elliptic type with a nonsmooth nonlinearity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 1,  80–86
  16. Approximate Penalty Method in Optimal Control Problems for Nonsmooth Singular Systems

    Mat. Zametki, 76:6 (2004),  893–904
  17. Optimal Control of an Elliptic Equation with a Nonsmooth Nonlinearity

    Differ. Uravn., 39:10 (2003),  1420–1424
  18. Lower augmentation and extension of extremal problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 5,  30–41
  19. Approximate Solution of Singular Optimization Problems

    Mat. Zametki, 74:5 (2003),  728–738
  20. Approximate solution of optimization problems for infinite-dimensional singular systems

    Sibirsk. Mat. Zh., 44:3 (2003),  660–673
  21. Arithmetic distributions and sequential extension of binary relations

    Mat. Zametki, 65:6 (1999),  836–853
  22. Optimal control of a nonlinear singular system with a fixed terminal state

    Differ. Uravn., 33:8 (1997),  1114–1117
  23. Extendedly differentiable manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 1,  56–65
  24. Extremal problems on differentiable submanifolds of a Banach space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 5,  83–86
  25. On a minimax problem for nonlinear elliptic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 4,  66–74
  26. Optimal control of a nonlinear singular system with state constraints

    Mat. Zametki, 60:4 (1996),  511–518
  27. Gradient methods in an optimal control problem for a nonlinear elliptic system

    Sibirsk. Mat. Zh., 37:5 (1996),  1154–1166
  28. Necessary conditions for an extremum in the case of the nondifferentiability of the state function with respect to the control

    Differ. Uravn., 31:6 (1995),  1055–1059
  29. An inverse mapping theorem and extended differentiability in Banach spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 8,  39–49
  30. Optimization in a nonlinear parabolic system with a control in the coefficients

    Mat. Sb., 185:4 (1994),  151–160
  31. Differentiation of Inverse Functions in Spaces without Norm

    Funktsional. Anal. i Prilozhen., 27:4 (1993),  84–87
  32. Optimization in a nonlinear elliptic system with control in the coefficients

    Mat. Zametki, 54:2 (1993),  85–95
  33. The regularization method in a problem of the optimal control of a nonlinear hyperbolic system

    Differ. Uravn., 28:12 (1992),  2188–2190
  34. Optimal control in a nonlinear stationary system with a nonmonotone operator

    Differ. Uravn., 28:9 (1992),  1579–1587
  35. Pareto optimality for a system described by a nonlinear equation of parabolic type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 11,  55–64
  36. Stability with respect to linear approximation in infinite-dimensional systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 8,  57–64
  37. Necessary conditions for optimality for a class of nonlinear singular elliptic systems

    Sibirsk. Mat. Zh., 33:2 (1992),  206–210
  38. Extended differentiability of an implicit function in spaces without a norm

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 12,  55–63
  39. Approximate conditions for optimality for a system described by a nonlinear parabolic equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 11,  52–60
  40. Necessary and sufficient conditions for optimality for a system described by a nonlinear elliptic equation

    Sibirsk. Mat. Zh., 32:3 (1991),  141–150
  41. Linearizability of infinite-dimensional control systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 12,  71–80
  42. Quasiconjugate systems and necessary conditions for optimality in nonlinear infinite-dimensional systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 4,  61–69
  43. Method of Tikhonov regularization in a problem of optimal control of a nonlinear parabolic system

    Sibirsk. Mat. Zh., 30:1 (1989),  212–215
  44. An optimal control problem for an elliptic system with a power singularity

    Sibirsk. Mat. Zh., 25:1 (1984),  120–125
  45. The method of successive approximations in the problem of optimal control of a nonlinear parabolic system

    Zh. Vychisl. Mat. Mat. Fiz., 24:11 (1984),  1638–1648
  46. Optimal control for a bilinear hyperbolic system

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 10,  46–48
  47. A control problem in coefficients for equations of parabolic type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 12,  44–50


© Steklov Math. Inst. of RAS, 2026