RUS  ENG
Full version
PEOPLE

Falaleev Mihail Valentinovich

Publications in Math-Net.Ru

  1. On the solvability and limiting properties of some systems of partial differential equations with a small parameter in the principal part

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 240 (2025),  39–48
  2. On some systems of partial differential equations with a small parameter in the principal part

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 234 (2024),  50–58
  3. Singular systems of differential equations in Banach spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224 (2023),  150–160
  4. On the solvability in the class of distributions of differential equations with derivatives of functionals in Banach spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212 (2022),  100–112
  5. Convolutional integro-differential equations in Banach spaces with a Noetherian operator in the main part

    J. Sib. Fed. Univ. Math. Phys., 15:2 (2022),  150–161
  6. On solvability in the class of distributions of degenerate integro-differential equations in Banach spaces

    Bulletin of Irkutsk State University. Series Mathematics, 34 (2020),  77–92
  7. Generalized solutions of degenerate integro-differential equations in Banach spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 183 (2020),  139–151
  8. Fundamental operator functions of integro-differential operators under spectral or polynomial boundedness

    Ufimsk. Mat. Zh., 12:2 (2020),  55–70
  9. Fundamental operator-valued functions of singular integrodifferential operators in Banach spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017),  127–130
  10. Degenerate integro-differential equations of convolution type in Banach spaces

    Bulletin of Irkutsk State University. Series Mathematics, 17 (2016),  77–85
  11. Singular integro-differential equations of the special type in Banach spaces and it’s applications

    Bulletin of Irkutsk State University. Series Mathematics, 6:4 (2013),  128–137
  12. Linear Models in Theory of Viscoelasticity of Sobolev Type

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:4 (2013),  101–107
  13. Integro-differential equations with Fredholm operator by the derivative of the higest order in Banach spaces and it's applications

    Bulletin of Irkutsk State University. Series Mathematics, 5:2 (2012),  90–102
  14. Generalized solutions of singular integro-differential equations in Banach spaces and their applications

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  286–297
  15. Continuous and generalized solutions of singular integro-differential equations in Banach spaces

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 11,  62–74
  16. Vladilen Aleksandrovich Trenogin

    Bulletin of Irkutsk State University. Series Mathematics, 4:3 (2011),  171–172
  17. Integro-differential equations with degeneration in Banach spaces and it's applications in mathematical theory of elasticity

    Bulletin of Irkutsk State University. Series Mathematics, 4:1 (2011),  118–134
  18. Degenerate integro-differential operators in Banach spaces and their applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 10,  68–79
  19. Degenerated integro-differential equations of special kind in Banach spaces and it's applications

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 7,  100–110
  20. Degenerated abstract problem of prediction-control in Banach spaces

    Bulletin of Irkutsk State University. Series Mathematics, 3:1 (2010),  126–132
  21. Degenerate high-order differential equations of a special kind in Banach spaces and their applications

    Sib. Zh. Ind. Mat., 13:3 (2010),  126–139
  22. Systems of degenerate differential equations in Banach spaces

    Sibirsk. Mat. Zh., 49:4 (2008),  916–927
  23. Fundamental operator functions of singular differential operators under spectral boundedness conditions

    Differ. Uravn., 42:6 (2006),  769–774
  24. Fundamental operator functions of singular differential operators under sectoriality and radiality conditions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 10,  68–75
  25. Generalized solutions of Volterra integral equations of the first kind

    Lobachevskii J. Math., 20 (2005),  47–57
  26. Continuous and generalized solutions of singular partial differential equations

    Lobachevskii J. Math., 20 (2005),  31–45
  27. Fundamental operator-functions of degenerate differential and difference-differential operators in Banach spaces which have a Noether operator in the principal part

    Sibirsk. Mat. Zh., 46:6 (2005),  1393–1406
  28. Fundamental operator-functions of singular differential operators in Banach spaces

    Sibirsk. Mat. Zh., 41:5 (2000),  1167–1182
  29. Задача Коши для вырожденных интегро-дифференциальных уравнений в банаховых пространствах

    Vestnik Chelyabinsk. Gos. Univ., 1999, no. 5,  126–136
  30. Generalized solution of differential equations with a Fredholm operator at the derivative

    Differ. Uravn., 23:4 (1987),  726–728

  31. On the occasion of the 80th birthday of professor N. A. Sidorov

    Bulletin of Irkutsk State University. Series Mathematics, 32 (2020),  134–143
  32. In the memory of professor Boris Vladimirovich Loginov

    Bulletin of Irkutsk State University. Series Mathematics, 23 (2018),  96–99
  33. In the memory of Trenogin Vladilen Aleksandrovich

    Bulletin of Irkutsk State University. Series Mathematics, 6:4 (2013),  138–140


© Steklov Math. Inst. of RAS, 2026