RUS  ENG
Full version
PEOPLE

Shutyaev Victor Petrovich

Publications in Math-Net.Ru

  1. A fast numerical method for the source reconstruction in the coagulation-fragmentation equation

    Zh. Vychisl. Mat. Mat. Fiz., 65:7 (2025),  1091–1109
  2. Methods of variational assimilation of observation data in problems of geophysical hydrodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 65:6 (2025),  985–998
  3. Sensitivity of functionals to input data in a variational assimilation problem for the sea thermodynamics model

    Sib. Zh. Vychisl. Mat., 27:1 (2024),  97–112
  4. Sensitivity of the functionals of the variational data assimilation problem when reconstructing the initial state and heat flux for a model of sea thermodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 64:1 (2024),  176–186
  5. Data assimilation for the two-dimensional ambipolar diffusion equation in Earth’s ionosphere model

    Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023),  803–826
  6. Sensitivity of functionals of the solution to the variational assimilation problem to the input data on the heat flux for a model of sea thermodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023),  657–666
  7. Sensitivity of functionals of the solution of a variational data assimilation problem with simultaneous reconstruction of heat fluxes and the initial state for the sea thermodynamics model

    Sib. Zh. Vychisl. Mat., 23:4 (2020),  457–470
  8. Sensitivity of functionals to observation data in a variational assimilation problem for the sea thermodynamics model

    Sib. Zh. Vychisl. Mat., 22:2 (2019),  229–242
  9. Stability of the optimal solution to the problem of variational assimilation with error covariance matrices of observational data for the sea thermodynamics model

    Sib. Zh. Vychisl. Mat., 21:2 (2018),  225–242
  10. Adjoint equations and iterative algorithms in problems of variational data assimilation

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  136–150
  11. Numerical algorithm for variational assimilation of sea surface temperature data

    Zh. Vychisl. Mat. Mat. Fiz., 48:8 (2008),  1371–1391
  12. On the solvability of an initial-boundary value problem for a quasilinear heat equation

    Differ. Uravn., 35:6 (1999),  809–812
  13. An optimal control problem of initial data restoration

    Zh. Vychisl. Mat. Mat. Fiz., 39:9 (1999),  1479–1488
  14. On data assimilation in a scale of Hilbert spaces for quasilinear evolution problems

    Differ. Uravn., 34:3 (1998),  383–389
  15. Substantiation of the perturbation method for a quasilinear heat-conduction problem

    Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998),  948–955
  16. Iterative method for initial-data reconstruction in singularly perturbed evolutionary problems

    Zh. Vychisl. Mat. Mat. Fiz., 37:9 (1997),  1078–1086
  17. Algorithms for solving a problem of data assimilation

    Zh. Vychisl. Mat. Mat. Fiz., 37:7 (1997),  816–827
  18. Some properties of a control operator in the problem of data assimilation, and algorithms for its solution

    Differ. Uravn., 31:12 (1995),  2063–2069
  19. The properties of control operators in one problem on data control and algorithms for its solution

    Mat. Zametki, 57:6 (1995),  941–944
  20. Perturbation algorithm for one slightly nonlinear first-order hyperbolic problem

    Zh. Vychisl. Mat. Mat. Fiz., 33:8 (1993),  1209–1217
  21. Properties of a solution of a conjugate equation in a nonlinear hyperbolic problem

    Differ. Uravn., 28:4 (1992),  706–715
  22. Perturbation method for a weakly nonlinear hyperbolic first order problem

    Mat. Zametki, 50:5 (1991),  156–158
  23. Justification of perturbation algorithm in a nonlinear hyperbolic problem

    Mat. Zametki, 49:4 (1991),  155–156
  24. Computation of a functional in a certain nonlinear problem using the adjoint equation

    Zh. Vychisl. Mat. Mat. Fiz., 31:9 (1991),  1278–1288


© Steklov Math. Inst. of RAS, 2026