|
|
Publications in Math-Net.Ru
-
Boundary value problem for the stationary thermal diffusion model with variable coefficients
Dokl. RAN. Math. Inf. Proc. Upr., 526 (2025), 3–7
-
Influence of vibration on the onset of convection in second grade fluid
Zh. Vychisl. Mat. Mat. Fiz., 65:5 (2025), 807–814
-
Corkscrew flows and their two-dimensional analogs
Prikl. Mekh. Tekh. Fiz., 65:5 (2024), 169–177
-
Exact Solutions of Second-Grade Fluid Equations
Trudy Mat. Inst. Steklova, 322 (2023), 180–194
-
On rotation of a fluid layer
Prikl. Mekh. Tekh. Fiz., 63:6 (2022), 96–103
-
Strip deformation problem in three models of hydrodynamics
TMF, 211:2 (2022), 306–318
-
Problem of a point source
Prikl. Mekh. Tekh. Fiz., 60:2 (2019), 19–31
-
On the Voitkunskii–Amfilokhiev–Pavlovskii model of motion of aqueous polymer solutions
Trudy Mat. Inst. Steklova, 300 (2018), 176–189
-
Dirichlet Problem for the Stokes Equation
Mat. Zametki, 101:1 (2017), 110–115
-
Characteristic properties of the system of equations of an incompressible viscoelastic Maxwell medium
Prikl. Mekh. Tekh. Fiz., 58:5 (2017), 44–50
-
Exact solutions of precursor film equation
Sib. J. Pure and Appl. Math., 17:1 (2017), 17–35
-
Three dimensional flux problem for the Navier–Stokes equations
Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015), 95–104
-
Point vortex in a viscous incompressible fluid
Prikl. Mekh. Tekh. Fiz., 55:2 (2014), 180–187
-
The flux problem for the Navier–Stokes equations
Uspekhi Mat. Nauk, 69:6(420) (2014), 115–176
-
Special case of the Cahn-Hilliard Equation
Sib. Èlektron. Mat. Izv., 10 (2013), 324–334
-
Hyperbolic submodels of an incompressible viscoelastic Maxwell medium
Trudy Mat. Inst. Steklova, 281 (2013), 84–97
-
Nonlinear diffusion and exact solutions to the Navier–Stokes equations
Bulletin of Irkutsk State University. Series Mathematics, 3:1 (2010), 61–69
-
Mathematical model of an incompressible viscoelastic Maxwell medium
Prikl. Mekh. Tekh. Fiz., 51:4 (2010), 116–126
-
Couette Problem for Kelvin–Voigt Medium
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010), 94–109
-
Exact solutions of the equations of motion for an incompressible viscoelastic Maxwell medium
Prikl. Mekh. Tekh. Fiz., 50:2 (2009), 16–23
-
Steady-state conditions of a nonisothermal film with a heat-insulated free boundary
Prikl. Mekh. Tekh. Fiz., 49:4 (2008), 59–73
-
Boundary layer equations in the problem of axially symmetric jet flow
Zap. Nauchn. Sem. POMI, 362 (2008), 48–63
-
Equilibrium of a free nonisothermal liquid film
Prikl. Mekh. Tekh. Fiz., 48:3 (2007), 16–29
-
On the equation of a rotating film
Sibirsk. Mat. Zh., 46:5 (2005), 1138–1151
-
Integrals of motion of an incompressible fluid occupying the entire space
Prikl. Mekh. Tekh. Fiz., 45:2 (2004), 22–27
-
Exact solutions of the hydrodynamic equations derived from partially invariant solutions
Prikl. Mekh. Tekh. Fiz., 44:3 (2003), 18–25
-
Capillary/gravity film flows on the surface of a rotating cylinder
Zap. Nauchn. Sem. POMI, 306 (2003), 165–185
-
Quasistationary approximation in the rotating ring problem
Sibirsk. Mat. Zh., 43:3 (2002), 652–677
-
Hierarchy of models in the theory of convection
Zap. Nauchn. Sem. POMI, 288 (2002), 152–177
-
Model problem of instantaneous motion of a three-phase contact line
Prikl. Mekh. Tekh. Fiz., 40:4 (1999), 51–61
-
One-dimensional motion of an emulsion with solidification
Prikl. Mekh. Tekh. Fiz., 40:3 (1999), 128–136
-
One class of partially invariant solutions of the Navier–Stokes equations
Prikl. Mekh. Tekh. Fiz., 40:2 (1999), 24–33
-
Solvability of initial boundary value problem in non-standard model of convection
Zap. Nauchn. Sem. POMI, 233 (1996), 217–226
-
Exact multidimensional solutions of the nonlinear diffusion equation
Prikl. Mekh. Tekh. Fiz., 36:2 (1995), 23–31
-
Reciprocal transformations for the radial nonlinear heat equations
Zap. Nauchn. Sem. POMI, 213 (1994), 151–163
-
Problems with one-sided constraints for Navier–Stokes equations and the dynamic contact angle
Prikl. Mekh. Tekh. Fiz., 31:2 (1990), 27–40
-
Asymptotics of a velocity field at considerable distances from a self-propelled body
Prikl. Mekh. Tekh. Fiz., 30:2 (1989), 52–60
-
Transformations of equivalence and the hidden symmetry of evolution equations
Dokl. Akad. Nauk SSSR, 294:3 (1987), 535–538
-
A multi-dimensional self-similar Stefan problem in linearized statement
Differ. Uravn., 21:9 (1985), 1641–1642
-
Group analysis of nonstationary Marangoni boundary layer
equations
Dokl. Akad. Nauk SSSR, 279:5 (1984), 1061–1064
-
Generation of a singularity in the solution of a Stefan-type problem
Differ. Uravn., 16:3 (1980), 492–500
-
Thermocapillary motion in a gas-liquid mixture
Prikl. Mekh. Tekh. Fiz., 21:5 (1980), 38–45
-
Motion of a finite mass of fluid
Prikl. Mekh. Tekh. Fiz., 20:2 (1979), 25–43
-
On the stationary motion of a finite mass of fluid
Dokl. Akad. Nauk SSSR, 239:5 (1978), 1067–1070
-
Motion of a liquid film on the surface of a rotating cylinder in a gravitational field
Prikl. Mekh. Tekh. Fiz., 18:3 (1977), 78–88
-
On the theory of rolling waves
Prikl. Mekh. Tekh. Fiz., 16:5 (1975), 46–58
-
Von Mises variables for problems with a free boundary for the Navier–Stokes equations
Dokl. Akad. Nauk SSSR, 210:2 (1973), 298–301
-
Branching of rotationally symmetric solutions describing flows of a viscous liquid with a free surface
Prikl. Mekh. Tekh. Fiz., 14:2 (1973), 127–134
-
Invariant solutions of the Navier–Stokes equations describing motions with a free boundary
Dokl. Akad. Nauk SSSR, 202:2 (1972), 302–305
-
Two methods of approximate description of steady-state motions of a viscous incompressible liquid with a free boundary
Prikl. Mekh. Tekh. Fiz., 13:5 (1972), 126–134
-
A plane steady-state free-boundary problem for the Navier–Stokes equations
Prikl. Mekh. Tekh. Fiz., 13:3 (1972), 91–102
-
The asymptotic behavior as $t\rightarrow \infty $ of a positive solution of a boundary value problem for a model equation of chemical kinetics
Differ. Uravn., 7:1 (1971), 109–114
-
Small perturbations of plane unsteady motion of an ideal incompressible fluid with a free boundary in the shape of an ellipse
Prikl. Mekh. Tekh. Fiz., 12:4 (1971), 53–62
-
Asymptotic properties of the axisymmetric flow solution to the Navier–Stokes equations
Dokl. Akad. Nauk SSSR, 186:2 (1969), 283–285
-
Asymptotics of the solutions of a linear ordinary second order differential equation with transition point dependent on a parameter
Differ. Uravn., 4:3 (1968), 429–438
-
On an equation in which the derivative terms contain two small parameters
Zh. Vychisl. Mat. Mat. Fiz., 6:1 (1966), 178–183
-
Stability analysis of a steady plane detonation wave
Prikl. Mekh. Tekh. Fiz., 6:4 (1965), 79–85
-
Stability of Chapmen–Juge detonation
Dokl. Akad. Nauk SSSR, 149:4 (1963), 798–801
-
Об устойчивости детонации Чепмена–Жуге
Prikl. Mekh. Tekh. Fiz., 4:6 (1963), 66–73
-
Групповые свойства уравнений Навье–Стокса в плоском случае
Prikl. Mekh. Tekh. Fiz., 1:1 (1960), 83–90
-
On the 90th birthday of Vsevolod Alekseevich Solonnikov
Uspekhi Mat. Nauk, 78:5(473) (2023), 187–198
-
Andrei Gennad'evich Kulikovskii: On the occasion of his 90th birthday
Trudy Mat. Inst. Steklova, 322 (2023), 7–9
-
Nikolai Aleksandrovich Sidorov (on 80th birthday)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020), 119–121
-
Sergei Konstantinovich Godunov has turned 85 years old
Uspekhi Mat. Nauk, 70:3(423) (2015), 183–207
-
Nikolay Aleksandrovich Sidorov (to the 75th Anniversary)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015), 143–148
-
Boris Vasil'evich Fedosov (obituary)
Uspekhi Mat. Nauk, 67:1(403) (2012), 169–176
© , 2026