RUS  ENG
Full version
PEOPLE

Pukhnachev Vladislav Vasilievich

Publications in Math-Net.Ru

  1. Boundary value problem for the stationary thermal diffusion model with variable coefficients

    Dokl. RAN. Math. Inf. Proc. Upr., 526 (2025),  3–7
  2. Influence of vibration on the onset of convection in second grade fluid

    Zh. Vychisl. Mat. Mat. Fiz., 65:5 (2025),  807–814
  3. Corkscrew flows and their two-dimensional analogs

    Prikl. Mekh. Tekh. Fiz., 65:5 (2024),  169–177
  4. Exact Solutions of Second-Grade Fluid Equations

    Trudy Mat. Inst. Steklova, 322 (2023),  180–194
  5. On rotation of a fluid layer

    Prikl. Mekh. Tekh. Fiz., 63:6 (2022),  96–103
  6. Strip deformation problem in three models of hydrodynamics

    TMF, 211:2 (2022),  306–318
  7. Problem of a point source

    Prikl. Mekh. Tekh. Fiz., 60:2 (2019),  19–31
  8. On the Voitkunskii–Amfilokhiev–Pavlovskii model of motion of aqueous polymer solutions

    Trudy Mat. Inst. Steklova, 300 (2018),  176–189
  9. Dirichlet Problem for the Stokes Equation

    Mat. Zametki, 101:1 (2017),  110–115
  10. Characteristic properties of the system of equations of an incompressible viscoelastic Maxwell medium

    Prikl. Mekh. Tekh. Fiz., 58:5 (2017),  44–50
  11. Exact solutions of precursor film equation

    Sib. J. Pure and Appl. Math., 17:1 (2017),  17–35
  12. Three dimensional flux problem for the Navier–Stokes equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015),  95–104
  13. Point vortex in a viscous incompressible fluid

    Prikl. Mekh. Tekh. Fiz., 55:2 (2014),  180–187
  14. The flux problem for the Navier–Stokes equations

    Uspekhi Mat. Nauk, 69:6(420) (2014),  115–176
  15. Special case of the Cahn-Hilliard Equation

    Sib. Èlektron. Mat. Izv., 10 (2013),  324–334
  16. Hyperbolic submodels of an incompressible viscoelastic Maxwell medium

    Trudy Mat. Inst. Steklova, 281 (2013),  84–97
  17. Nonlinear diffusion and exact solutions to the Navier–Stokes equations

    Bulletin of Irkutsk State University. Series Mathematics, 3:1 (2010),  61–69
  18. Mathematical model of an incompressible viscoelastic Maxwell medium

    Prikl. Mekh. Tekh. Fiz., 51:4 (2010),  116–126
  19. Couette Problem for Kelvin–Voigt Medium

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010),  94–109
  20. Exact solutions of the equations of motion for an incompressible viscoelastic Maxwell medium

    Prikl. Mekh. Tekh. Fiz., 50:2 (2009),  16–23
  21. Steady-state conditions of a nonisothermal film with a heat-insulated free boundary

    Prikl. Mekh. Tekh. Fiz., 49:4 (2008),  59–73
  22. Boundary layer equations in the problem of axially symmetric jet flow

    Zap. Nauchn. Sem. POMI, 362 (2008),  48–63
  23. Equilibrium of a free nonisothermal liquid film

    Prikl. Mekh. Tekh. Fiz., 48:3 (2007),  16–29
  24. On the equation of a rotating film

    Sibirsk. Mat. Zh., 46:5 (2005),  1138–1151
  25. Integrals of motion of an incompressible fluid occupying the entire space

    Prikl. Mekh. Tekh. Fiz., 45:2 (2004),  22–27
  26. Exact solutions of the hydrodynamic equations derived from partially invariant solutions

    Prikl. Mekh. Tekh. Fiz., 44:3 (2003),  18–25
  27. Capillary/gravity film flows on the surface of a rotating cylinder

    Zap. Nauchn. Sem. POMI, 306 (2003),  165–185
  28. Quasistationary approximation in the rotating ring problem

    Sibirsk. Mat. Zh., 43:3 (2002),  652–677
  29. Hierarchy of models in the theory of convection

    Zap. Nauchn. Sem. POMI, 288 (2002),  152–177
  30. Model problem of instantaneous motion of a three-phase contact line

    Prikl. Mekh. Tekh. Fiz., 40:4 (1999),  51–61
  31. One-dimensional motion of an emulsion with solidification

    Prikl. Mekh. Tekh. Fiz., 40:3 (1999),  128–136
  32. One class of partially invariant solutions of the Navier–Stokes equations

    Prikl. Mekh. Tekh. Fiz., 40:2 (1999),  24–33
  33. Solvability of initial boundary value problem in non-standard model of convection

    Zap. Nauchn. Sem. POMI, 233 (1996),  217–226
  34. Exact multidimensional solutions of the nonlinear diffusion equation

    Prikl. Mekh. Tekh. Fiz., 36:2 (1995),  23–31
  35. Reciprocal transformations for the radial nonlinear heat equations

    Zap. Nauchn. Sem. POMI, 213 (1994),  151–163
  36. Problems with one-sided constraints for Navier–Stokes equations and the dynamic contact angle

    Prikl. Mekh. Tekh. Fiz., 31:2 (1990),  27–40
  37. Asymptotics of a velocity field at considerable distances from a self-propelled body

    Prikl. Mekh. Tekh. Fiz., 30:2 (1989),  52–60
  38. Transformations of equivalence and the hidden symmetry of evolution equations

    Dokl. Akad. Nauk SSSR, 294:3 (1987),  535–538
  39. A multi-dimensional self-similar Stefan problem in linearized statement

    Differ. Uravn., 21:9 (1985),  1641–1642
  40. Group analysis of nonstationary Marangoni boundary layer equations

    Dokl. Akad. Nauk SSSR, 279:5 (1984),  1061–1064
  41. Generation of a singularity in the solution of a Stefan-type problem

    Differ. Uravn., 16:3 (1980),  492–500
  42. Thermocapillary motion in a gas-liquid mixture

    Prikl. Mekh. Tekh. Fiz., 21:5 (1980),  38–45
  43. Motion of a finite mass of fluid

    Prikl. Mekh. Tekh. Fiz., 20:2 (1979),  25–43
  44. On the stationary motion of a finite mass of fluid

    Dokl. Akad. Nauk SSSR, 239:5 (1978),  1067–1070
  45. Motion of a liquid film on the surface of a rotating cylinder in a gravitational field

    Prikl. Mekh. Tekh. Fiz., 18:3 (1977),  78–88
  46. On the theory of rolling waves

    Prikl. Mekh. Tekh. Fiz., 16:5 (1975),  46–58
  47. Von Mises variables for problems with a free boundary for the Navier–Stokes equations

    Dokl. Akad. Nauk SSSR, 210:2 (1973),  298–301
  48. Branching of rotationally symmetric solutions describing flows of a viscous liquid with a free surface

    Prikl. Mekh. Tekh. Fiz., 14:2 (1973),  127–134
  49. Invariant solutions of the Navier–Stokes equations describing motions with a free boundary

    Dokl. Akad. Nauk SSSR, 202:2 (1972),  302–305
  50. Two methods of approximate description of steady-state motions of a viscous incompressible liquid with a free boundary

    Prikl. Mekh. Tekh. Fiz., 13:5 (1972),  126–134
  51. A plane steady-state free-boundary problem for the Navier–Stokes equations

    Prikl. Mekh. Tekh. Fiz., 13:3 (1972),  91–102
  52. The asymptotic behavior as $t\rightarrow \infty $ of a positive solution of a boundary value problem for a model equation of chemical kinetics

    Differ. Uravn., 7:1 (1971),  109–114
  53. Small perturbations of plane unsteady motion of an ideal incompressible fluid with a free boundary in the shape of an ellipse

    Prikl. Mekh. Tekh. Fiz., 12:4 (1971),  53–62
  54. Asymptotic properties of the axisymmetric flow solution to the Navier–Stokes equations

    Dokl. Akad. Nauk SSSR, 186:2 (1969),  283–285
  55. Asymptotics of the solutions of a linear ordinary second order differential equation with transition point dependent on a parameter

    Differ. Uravn., 4:3 (1968),  429–438
  56. On an equation in which the derivative terms contain two small parameters

    Zh. Vychisl. Mat. Mat. Fiz., 6:1 (1966),  178–183
  57. Stability analysis of a steady plane detonation wave

    Prikl. Mekh. Tekh. Fiz., 6:4 (1965),  79–85
  58. Stability of Chapmen–Juge detonation

    Dokl. Akad. Nauk SSSR, 149:4 (1963),  798–801
  59. Об устойчивости детонации Чепмена–Жуге

    Prikl. Mekh. Tekh. Fiz., 4:6 (1963),  66–73
  60. Групповые свойства уравнений Навье–Стокса в плоском случае

    Prikl. Mekh. Tekh. Fiz., 1:1 (1960),  83–90

  61. On the 90th birthday of Vsevolod Alekseevich Solonnikov

    Uspekhi Mat. Nauk, 78:5(473) (2023),  187–198
  62. Andrei Gennad'evich Kulikovskii: On the occasion of his 90th birthday

    Trudy Mat. Inst. Steklova, 322 (2023),  7–9
  63. Nikolai Aleksandrovich Sidorov (on 80th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  119–121
  64. Sergei Konstantinovich Godunov has turned 85 years old

    Uspekhi Mat. Nauk, 70:3(423) (2015),  183–207
  65. Nikolay Aleksandrovich Sidorov (to the 75th Anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015),  143–148
  66. Boris Vasil'evich Fedosov (obituary)

    Uspekhi Mat. Nauk, 67:1(403) (2012),  169–176


© Steklov Math. Inst. of RAS, 2026