RUS  ENG
Full version
PEOPLE

Volkov Yuriy Stepanovich

Publications in Math-Net.Ru

  1. Error bounds for interpolation in the mean integro quadratic splines and superconvergence points

    Dokl. RAN. Math. Inf. Proc. Upr., 523 (2025),  31–34
  2. Application of Steklov's method of smoothing functions to numerical differentiation and construction of local quasi-interpolation splines

    Mat. Tr., 28:2 (2025),  28–49
  3. On end conditions for integro quadratic spline interpolation in the mean

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025),  95–105
  4. Estimates of the $p$-norms of solutions to difference equations and infinite systems of linear equations

    Sibirsk. Mat. Zh., 65:6 (2024),  1153–1163
  5. Estimates of the $p$-norms of solutions and inverse matrices of systems of linear equations with a circulant matrix

    Zh. Vychisl. Mat. Mat. Fiz., 64:8 (2024),  1388–1397
  6. A modified quadratic interpolation method for root finding

    Sib. Zh. Ind. Mat., 26:3 (2023),  5–13
  7. Estimates of solutions to infinite systems of linear equations and the problem of interpolation by cubic splines on the real line

    Sibirsk. Mat. Zh., 63:4 (2022),  814–830
  8. Shape Preserving Conditions for Integro Quadratic Spline Interpolation in the Mean

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  71–77
  9. On the determination of the velocity and elastic parameters of the focal zone medium from the earthquake hodographs

    Sib. Zh. Ind. Mat., 24:4 (2021),  5–24
  10. A remark on the connection between the second divided difference and the second derivative

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  19–21
  11. One problem of extremal functional interpolation and the Favard constants

    Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020),  34–37
  12. Efficient computation of Favard constants and their connection to Euler polynomials and numbers

    Sib. Èlektron. Mat. Izv., 17 (2020),  1921–1942
  13. On error estimates of local approximation by splines

    Sibirsk. Mat. Zh., 61:5 (2020),  1000–1008
  14. Euler polynomials in the problem of extremal functional interpolation in the mean

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  83–97
  15. Shape-preservation conditions for cubic spline interpolation

    Mat. Tr., 22:1 (2019),  19–67
  16. Convergence of spline interpolation processes and conditionality of systems of equations for spline construction

    Mat. Sb., 210:4 (2019),  87–102
  17. Study of the convergence of interpolation processes with splines of even degree

    Sibirsk. Mat. Zh., 60:6 (2019),  1247–1259
  18. Convergence of Quartic Interpolating Splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  67–74
  19. On determination of gel point

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 59,  53–64
  20. Example of parabolic spline interpolation with bounded Lebesgue constant

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  85–91
  21. Vibrational viscosimetry and a numerical method for finding the gelation dynamics

    Sib. Zh. Ind. Mat., 19:4 (2016),  22–30
  22. The general problem of polynomial spline interpolation

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  114–125
  23. Shape preservation conditions under interpolation by Subbotin's parabolic splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  102–113
  24. 50 years to Schoenberg's problem on the convergence of spline interpolation

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  52–67
  25. Shape preserving conditions for quadratic spline interpolation in the sense of Subbotin and Marsden

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  145–152
  26. Orders of approximation by local exponential splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  135–144
  27. Local approximation by splines with displacement of nodes

    Mat. Tr., 14:2 (2011),  73–82
  28. Approximation of Derivatives by Jumps of Interpolating Splines

    Mat. Zametki, 89:1 (2011),  127–130
  29. Certain Criterion for the Horizontal Homogeneity of a Medium in Inverse Kinematic Problem of Seismics

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:3 (2011),  3–19
  30. Shape-Preserving Interpolation by Cubic Splines

    Mat. Zametki, 88:6 (2010),  836–844
  31. The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines

    Sib. Zh. Vychisl. Mat., 13:3 (2010),  243–253
  32. Norm estimates for the inverses of matrices of monotone type and totally positive matrices

    Sibirsk. Mat. Zh., 50:6 (2009),  1248–1254
  33. On complete interpolation spline finding via $B$-splines

    Sib. Èlektron. Mat. Izv., 5 (2008),  334–338
  34. Использование $B$-сплайнов в задаче эмиссионной $2D$-томографии в рефрагирующей среде

    Sib. Zh. Ind. Mat., 11:3 (2008),  45–60
  35. On the choice of approximations in direct problems of nozzle design

    Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007),  923–936
  36. Selection of parameters of generalized cubic splines with convexity preserving interpolation

    Sib. Zh. Vychisl. Mat., 9:1 (2006),  5–22
  37. Unconditional convergence of one more middle derivative for interpolation splines of odd degree

    Dokl. Akad. Nauk, 401:5 (2005),  592–594
  38. Totally Positive Matrices in the Methods of Constructing Interpolation Splines of Odd Degree

    Mat. Tr., 7:2 (2004),  3–34
  39. Comparison of basis functions in the direct design problem for the supersonic part of a nozzle

    Sib. Zh. Ind. Mat., 7:4 (2004),  48–58
  40. A new method for constructing cubic interpolating splines

    Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004),  231–241
  41. On estimation of entries of a matrix inverse to a cyclic band matrix

    Sib. Zh. Vychisl. Mat., 6:3 (2003),  263–267
  42. Nonnegative Solutions to Systems with Symmetric Circulant Matrix

    Mat. Zametki, 70:2 (2001),  170–180
  43. Best Error Bounds for the Derivative of a Quartic Interpolation Spline

    Mat. Tr., 1:2 (1998),  68–78
  44. Constructing a mathematical model of a universal characteristic for a radial-axial hydroturbine

    Sib. Zh. Ind. Mat., 1:1 (1998),  77–88
  45. Oscillation matrices in spline-interpolation problems

    Sibirsk. Mat. Zh., 28:3 (1987),  51–53

  46. International S.B. Stechkin's Workshop-Conference on Function Theory dedicated to the 85th anniversary of Yu.N. Subbotin and N.I. Chernykh

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  93–108
  47. Splines as a geometric modeling tool (to the 80 anniversary of the birth of Yu. S. Zav'yalov)

    Sib. Èlektron. Mat. Izv., 8 (2011),  11–16


© Steklov Math. Inst. of RAS, 2026