|
|
Publications in Math-Net.Ru
-
Error bounds for interpolation in the mean integro quadratic splines and superconvergence points
Dokl. RAN. Math. Inf. Proc. Upr., 523 (2025), 31–34
-
Application of Steklov's method of smoothing functions to numerical differentiation and construction of local quasi-interpolation splines
Mat. Tr., 28:2 (2025), 28–49
-
On end conditions for integro quadratic spline interpolation in the mean
Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025), 95–105
-
Estimates of the $p$-norms of solutions to difference equations and infinite systems of linear equations
Sibirsk. Mat. Zh., 65:6 (2024), 1153–1163
-
Estimates of the $p$-norms of solutions and inverse matrices of systems of linear equations with a circulant matrix
Zh. Vychisl. Mat. Mat. Fiz., 64:8 (2024), 1388–1397
-
A modified quadratic interpolation method for root finding
Sib. Zh. Ind. Mat., 26:3 (2023), 5–13
-
Estimates of solutions to infinite systems of linear equations and the problem of interpolation by cubic splines on the real line
Sibirsk. Mat. Zh., 63:4 (2022), 814–830
-
Shape Preserving Conditions for Integro Quadratic Spline Interpolation in the Mean
Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 71–77
-
On the determination of the velocity and elastic parameters of the focal zone medium from the earthquake hodographs
Sib. Zh. Ind. Mat., 24:4 (2021), 5–24
-
A remark on the connection between the second divided difference and the second derivative
Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021), 19–21
-
One problem of extremal functional interpolation and the Favard constants
Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 34–37
-
Efficient computation of Favard constants and their connection to Euler polynomials and numbers
Sib. Èlektron. Mat. Izv., 17 (2020), 1921–1942
-
On error estimates of local approximation by splines
Sibirsk. Mat. Zh., 61:5 (2020), 1000–1008
-
Euler polynomials in the problem of extremal functional interpolation in the mean
Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020), 83–97
-
Shape-preservation conditions for cubic spline interpolation
Mat. Tr., 22:1 (2019), 19–67
-
Convergence of spline interpolation processes and conditionality of systems of equations for spline construction
Mat. Sb., 210:4 (2019), 87–102
-
Study of the convergence of interpolation processes with splines of even degree
Sibirsk. Mat. Zh., 60:6 (2019), 1247–1259
-
Convergence of Quartic Interpolating Splines
Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019), 67–74
-
On determination of gel point
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 59, 53–64
-
Example of parabolic spline interpolation with bounded Lebesgue constant
Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018), 85–91
-
Vibrational viscosimetry and a numerical method for finding the gelation dynamics
Sib. Zh. Ind. Mat., 19:4 (2016), 22–30
-
The general problem of polynomial spline interpolation
Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 114–125
-
Shape preservation conditions under interpolation by Subbotin's parabolic splines
Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 102–113
-
50 years to Schoenberg's problem on the convergence of spline interpolation
Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 52–67
-
Shape preserving conditions for quadratic spline interpolation in the sense of Subbotin and Marsden
Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012), 145–152
-
Orders of approximation by local exponential splines
Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012), 135–144
-
Local approximation by splines with displacement of nodes
Mat. Tr., 14:2 (2011), 73–82
-
Approximation of Derivatives by Jumps of Interpolating Splines
Mat. Zametki, 89:1 (2011), 127–130
-
Certain Criterion for the Horizontal Homogeneity of a Medium in Inverse Kinematic Problem of Seismics
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:3 (2011), 3–19
-
Shape-Preserving Interpolation by Cubic Splines
Mat. Zametki, 88:6 (2010), 836–844
-
The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines
Sib. Zh. Vychisl. Mat., 13:3 (2010), 243–253
-
Norm estimates for the inverses of matrices of monotone type and totally positive matrices
Sibirsk. Mat. Zh., 50:6 (2009), 1248–1254
-
On complete interpolation spline finding via $B$-splines
Sib. Èlektron. Mat. Izv., 5 (2008), 334–338
-
Использование $B$-сплайнов в задаче эмиссионной $2D$-томографии в рефрагирующей среде
Sib. Zh. Ind. Mat., 11:3 (2008), 45–60
-
On the choice of approximations in direct problems of nozzle design
Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007), 923–936
-
Selection of parameters of generalized cubic splines with convexity preserving interpolation
Sib. Zh. Vychisl. Mat., 9:1 (2006), 5–22
-
Unconditional convergence of one more middle derivative for
interpolation splines of odd degree
Dokl. Akad. Nauk, 401:5 (2005), 592–594
-
Totally Positive Matrices in the Methods of Constructing Interpolation Splines of Odd Degree
Mat. Tr., 7:2 (2004), 3–34
-
Comparison of basis functions in the direct design problem for the supersonic part of a nozzle
Sib. Zh. Ind. Mat., 7:4 (2004), 48–58
-
A new method for constructing cubic interpolating splines
Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004), 231–241
-
On estimation of entries of a matrix inverse to a cyclic band matrix
Sib. Zh. Vychisl. Mat., 6:3 (2003), 263–267
-
Nonnegative Solutions to Systems with Symmetric Circulant Matrix
Mat. Zametki, 70:2 (2001), 170–180
-
Best Error Bounds for the Derivative of a Quartic Interpolation Spline
Mat. Tr., 1:2 (1998), 68–78
-
Constructing a mathematical model of a universal characteristic for a radial-axial hydroturbine
Sib. Zh. Ind. Mat., 1:1 (1998), 77–88
-
Oscillation matrices in spline-interpolation problems
Sibirsk. Mat. Zh., 28:3 (1987), 51–53
-
International S.B. Stechkin's Workshop-Conference on Function Theory dedicated to the 85th anniversary of Yu.N. Subbotin and N.I. Chernykh
Sib. Èlektron. Mat. Izv., 18:2 (2021), 93–108
-
Splines as a geometric modeling tool (to the 80 anniversary of the birth of Yu. S. Zav'yalov)
Sib. Èlektron. Mat. Izv., 8 (2011), 11–16
© , 2026