RUS  ENG
Full version
PEOPLE

Sheipak Igor Anatolievich

Publications in Math-Net.Ru

  1. Generalized family of Takagi functions in some spectral problems

    Algebra i Analiz, 38:1 (2026),  235–246
  2. On sharp uniform estimates of intermediate even-order derivatives in Sobolev spaces

    Mat. Zametki, 118:5 (2025),  698–713
  3. Operator model of the Benard problem and its spectral analysis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 2,  23–29
  4. Exact estimates of functions in Sobolev spaces with uniform norm

    Dokl. RAN. Math. Inf. Proc. Upr., 516 (2024),  9–14
  5. Exact estimates for higher order derivatives in Sobolev spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1,  3–10
  6. Bernoulli numbers in the embedding constants of Sobolev spaces with different boundary conditions

    Algebra i Analiz, 35:2 (2023),  226–245
  7. Relationship Between the Best $L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces

    Mat. Zametki, 114:4 (2023),  623–627
  8. Chebyshev-Type Polynomials Arising in Poincaré Limit Inequalities

    Mat. Zametki, 112:1 (2022),  153–157
  9. String equation with weight that is a noncompact multiplier: continuous spectrum and eigenvalues

    Algebra i Analiz, 33:4 (2021),  155–172
  10. On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces

    Funktsional. Anal. i Prilozhen., 55:1 (2021),  43–55
  11. Orthogonality Relations for the Primitives of Legendre Polynomials and Their Applications to Some Spectral Problems for Differential Operators

    Mat. Zametki, 110:4 (2021),  498–506
  12. On Hölder exponents of the self-similar functions

    Funktsional. Anal. i Prilozhen., 53:1 (2019),  67–78
  13. An explicit form for extremal functions in the embedding constant problem for Sobolev spaces

    Tr. Mosk. Mat. Obs., 80:2 (2019),  221–246
  14. On the Singularity of Functions and the Quantization of Probability Measures

    Mat. Zametki, 102:4 (2017),  628–631
  15. On the string equation with a singular weight belonging to the space of multipliers in Sobolev spaces with negative index of smoothness

    Izv. RAN. Ser. Mat., 80:6 (2016),  258–273
  16. Description of Self-Similar Multipliers in Negative Sobolev Spaces Satisfying the Dirichlet Condition

    Mat. Zametki, 99:2 (2016),  314–318
  17. Asymptotics of the Spectrum of a Differential Operator with the Weight Generated by the Minkowski Function

    Mat. Zametki, 97:2 (2015),  302–308
  18. On the Neumann Problem for the Sturm–Liouville Equation with Cantor-Type Self-Similar Weight

    Funktsional. Anal. i Prilozhen., 47:4 (2013),  18–29
  19. Eigenvalue asymptotics of the problem of high odd order with dicrete self-similar weight

    Algebra i Analiz, 24:2 (2012),  104–119
  20. A boundedness criterion for the variations of self-similar functions

    Sibirsk. Mat. Zh., 53:1 (2012),  68–88
  21. Spectrum of a Jacobi matrix with exponentially growing matrix elements

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 6,  15–21
  22. Asymptotics of the Eigenvalues of the Sturm–Liouville Problem with Discrete Self-Similar Weight

    Mat. Zametki, 88:5 (2010),  662–672
  23. Singular points of a self-similar function of spectral order zero: self-similar Stieltjes string

    Mat. Zametki, 88:2 (2010),  303–316
  24. On the Construction and Some Properties of Self-Similar Functions in the Spaces $L_p[0,1]$

    Mat. Zametki, 81:6 (2007),  924–938
  25. Self-similar functions in $L_2[0,1]$ and the Sturm–Liouville problem with singular indefinite weight

    Mat. Sb., 197:11 (2006),  13–30
  26. Indefinite Sturm–Liouville Problem for Some Classes of Self-similar Singular Weights

    Trudy Mat. Inst. Steklova, 255 (2006),  88–98
  27. Spectral properties of a certain operator matrix

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 3,  23–30
  28. Spectral problems associated with stability of fluid motion in an annulus in a magnetic field

    Fundam. Prikl. Mat., 7:2 (2001),  583–596
  29. Nontrivial fractals in the plane and linear operators with joint spectral radius equal to 1

    Mat. Zametki, 63:5 (1998),  797–800
  30. The eigenfunction system of a hydrodynamical problem is a Riesz basis

    Mat. Zametki, 58:5 (1995),  790–793
  31. On the basis properties of systems of root vectors of operators that are almost self-adjoint in Pontryagin spaces

    Mat. Zametki, 57:6 (1995),  937–940
  32. Spectral analysis of asymmetric disturbed Couette flow and related problems of hydrodynamic stability

    Mat. Zametki, 57:2 (1995),  278–282

  33. Andrei Andreevich Shkalikov (on his seventieth birthday)

    Tr. Mosk. Mat. Obs., 80:2 (2019),  133–145
  34. Олимпиада «Ломоносов»-2018. Математика

    Kvant, 2018, no. 11,  54–55
  35. Олимпиада «Покори Воробьевы горы!»

    Kvant, 2017, no. 9,  53–55
  36. Олимпиада «Ломоносов»-2017

    Kvant, 2017, no. 4,  52–58


© Steklov Math. Inst. of RAS, 2026