RUS  ENG
Full version
PEOPLE

Kononenko Larisa Ivanovna

Publications in Math-Net.Ru

  1. Qualitative analysis of one singularly perturbed system of differential equations with a small parameter

    Mathematical notes of NEFU, 31:3 (2024),  17–29
  2. An inverse problem of chemical kinetics in a nondegenerate case

    Mathematical notes of NEFU, 30:1 (2023),  63–71
  3. The inverse problem for singular perturbed system with many-sheeted slow surfaces

    Vladikavkaz. Mat. Zh., 25:3 (2023),  81–88
  4. The identification problem for a nonsingular system of ordinary differential equations with fast and slow variables

    Mathematical notes of NEFU, 28:2 (2021),  3–15
  5. Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics

    Sib. Èlektron. Mat. Izv., 16 (2019),  1640–1653
  6. Inverse problem of chemical kinetics as a composition of binary correspondences

    Sib. Èlektron. Mat. Izv., 15 (2018),  48–53
  7. Binary correspondences and the inverse problem of chemical kinetics

    Vladikavkaz. Mat. Zh., 20:3 (2018),  37–47
  8. Formalization of inverse problems and its applications

    Sib. J. Pure and Appl. Math., 17:4 (2017),  49–56
  9. An identification problem for singular systems with a small parameter in chemical kinetics

    Sib. Èlektron. Mat. Izv., 13 (2016),  175–180
  10. Direct and inverse problems for a singular system with slow and fast variables in chemical kinetics

    Vladikavkaz. Mat. Zh., 17:1 (2015),  39–46
  11. Parameterization and qualitative analysis of a singular system in a mathematical model of catalytic oxidation

    Sib. Zh. Ind. Mat., 15:1 (2012),  44–52
  12. A parameterization of the slow curve in a chemokinetics problem

    Sib. Zh. Ind. Mat., 13:3 (2010),  51–57
  13. Релаксационные колебания и решения–утки в сингулярных системах на плоскости

    Sib. Zh. Ind. Mat., 12:2 (2009),  58–64
  14. Relaxations in Singularly Perturbed Planar Systems

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009),  45–50
  15. Qualitative analysis of a singularly perturbed system in $\mathbb R^3$

    Sib. Zh. Ind. Mat., 10:4 (2007),  76–82
  16. The effect of the shape of an integral manifold on the occurrence of relaxation oscillations

    Sib. Zh. Ind. Mat., 9:2 (2006),  75–80
  17. Conditions for existence of relaxation oscillations in singular systems of low dimension

    Sib. Zh. Ind. Mat., 8:3 (2005),  87–92
  18. Relaxation oscillations in singular systems with slow and fast variables

    Sib. Zh. Ind. Mat., 7:3 (2004),  102–110
  19. Infinitesimal analysis of singular systems with fast and slow variables

    Sib. Zh. Ind. Mat., 6:4 (2003),  51–59
  20. Qualitative analysis of singularly perturbed systems with one or two slow and fast variables

    Sib. Zh. Ind. Mat., 5:4 (2002),  55–62
  21. On the smoothness of slow surfaces of singularly perturbed systems

    Sib. Zh. Ind. Mat., 5:2 (2002),  109–125
  22. The fold catastrophe in a mathematical model of a catalytic reactor of ideal mixing

    Sib. Zh. Ind. Mat., 4:1 (2001),  116–119
  23. On the smoothness of a slow surface in a mathematical model of the catalytic reactor of ideal mixing

    Sib. Zh. Ind. Mat., 3:2 (2000),  152–158
  24. Smoothness of a slow surface in a model of the catalytic oxidation reaction

    Sib. Zh. Ind. Mat., 2:2 (1999),  120–125
  25. On the smoothness of slow surfaces in problems of chemical kinetics

    Sib. Zh. Ind. Mat., 2:1 (1999),  75–78
  26. An integral manifold of slow motions in a problem of chemical kinetics

    Sib. Zh. Ind. Mat., 1:1 (1998),  127–131
  27. Asymptotic decomposition of slow integral manifolds

    Sibirsk. Mat. Zh., 35:6 (1994),  1264–1278

  28. Viktor Andreevich Toponogov (obituary)

    Uspekhi Mat. Nauk, 61:2(368) (2006),  153–156


© Steklov Math. Inst. of RAS, 2026