RUS  ENG
Full version
PEOPLE

Dryuma Valerii Semenovich

Publications in Math-Net.Ru

  1. The application of 14D Ricci-flat metrics to the equations of rotation of a top

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2024, no. 3,  137–144
  2. On limit cycles of polynomial systems of the first-order ODE's

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 2,  113–126
  3. The Ricci-flat spaces related to the Navier–Stokes equations

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 2,  99–102
  4. On spaces related to the Navier–Stokes equations

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 3,  107–110
  5. Four-dimensional Ricci-flat space defined by the KP-equation

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 3,  108–111
  6. On theory of surfaces defined by the first order systems of equations

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 1,  161–175
  7. Toward a Theory of Spaces of Constant Curvature

    TMF, 146:1 (2006),  42–54
  8. On the Riemann extension of the Gödel space-time metric

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, no. 3,  43–62
  9. On geometrical properties of the spaces defined by the Pfaff equations

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, no. 1,  69–84
  10. On Riemann extension of the Schwarzschild metric

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 3,  92–103
  11. On initial value problem in theory of the second order differential equations

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 2,  51–58
  12. The Riemann extensions in theory of differential equations and their applications

    Mat. Fiz. Anal. Geom., 10:3 (2003),  307–325
  13. Applications of Riemannian and Einstein–Weyl Geometry in the Theory of Second-Order Ordinary Differential Equations

    TMF, 128:1 (2001),  15–26
  14. Geometrical properties of the multidimensional nonlinear differential equations and the finsler metrics of phase spaces of dynamical systems

    TMF, 99:2 (1994),  241–249
  15. On the integration of the cylindrical Kadomtsev–Petviashvili equation by the method of the inverse problem of scattering theory

    Dokl. Akad. Nauk SSSR, 268:1 (1983),  15–17
  16. A group interpretation of nonlinear wave equations that are integrable by the method of the inverse problem of scattering theory

    Differ. Uravn., 13:9 (1977),  1713–1715


© Steklov Math. Inst. of RAS, 2026