RUS  ENG
Full version
PEOPLE

Kamenskii Georgii Alexandrovich

Publications in Math-Net.Ru

  1. The direct numerical Euler method for finding extrema of non-local functionals

    Sib. Zh. Vychisl. Mat., 11:3 (2008),  297–309
  2. On convergence of a finite difference scheme to solution of the third boundary value problem for a system of abstract elliptic equations

    Sib. Zh. Vychisl. Mat., 8:2 (2005),  109–126
  3. Approximate solution of variational problems for the mixed type nonlocal functionals

    Sib. Zh. Vychisl. Mat., 7:2 (2004),  115–123
  4. Application of the local variation method to the solution of variational problems with deviating argument

    Zh. Vychisl. Mat. Mat. Fiz., 24:6 (1984),  938–941
  5. On the minimum of a quadratic functional and on linear boundary value problems of elliptic type with deviating arguments

    Differ. Uravn., 16:8 (1980),  1469–1473
  6. The minimum of a quadratic functional, and linear elliptic boundary-value problems with deviating arguments

    Uspekhi Mat. Nauk, 34:3(207) (1979),  197–198
  7. The conditional extremum of a functional with deviating argument

    Dokl. Akad. Nauk SSSR, 235:2 (1977),  266–268
  8. On the convergence of the finite-difference method of numerically solving boundary-value problems for linear differential-difference equations

    Dokl. Akad. Nauk SSSR, 233:2 (1977),  280–282
  9. The variational method for the solution of boundary value problems for certain linear differential equations with deviating argument

    Differ. Uravn., 13:7 (1977),  1185–1191
  10. On extrema of functionals with deviating argument

    Dokl. Akad. Nauk SSSR, 224:6 (1975),  1252–1255
  11. A boundary value problem for second order quasilinear differential equations in divergence form with deviating argument

    Differ. Uravn., 10:12 (1974),  2137–2146
  12. On the formulation of boundary value problems for differential equations with deviating argument and several highest terms

    Differ. Uravn., 10:3 (1974),  409–418
  13. The behavior of the solutions of a differential equation with deviating argument of neutral type that has an integrating factor

    Dokl. Akad. Nauk SSSR, 212:4 (1973),  785–788
  14. The differential equation of neutral type that has an integrating factor

    Differ. Uravn., 9:11 (1973),  1956–1965
  15. Boundary value problems for a nonlinear differential equation with deviating argument of neutral type

    Differ. Uravn., 8:12 (1972),  2171–2179
  16. Boundary value problems with infinite defect for differential equations with deviating argument

    Differ. Uravn., 7:12 (1971),  2143–2150
  17. Variational and boundary value problems with deviating argument

    Differ. Uravn., 6:8 (1970),  1349–1358
  18. Theorems on ranges of values and a boundary-value problem for a second-order non-linear differential equation

    Mat. Sb. (N.S.), 60(102):1 (1963),  3–16
  19. Differential equations with a perturbed argument

    Uspekhi Mat. Nauk, 17:2(104) (1962),  77–164
  20. A two-point boundary-value problem for a non-linear second-order differential equation and mean-value theorems

    Dokl. Akad. Nauk SSSR, 139:3 (1961),  541–543
  21. Existence, uniqueness, and continuous dependence on initial values of the solutions of systems of differential equations with deviating argument of neutral type

    Mat. Sb. (N.S.), 55(97):4 (1961),  363–378
  22. On the formulation of initial conditions for differential equations with advanced argument

    Uspekhi Mat. Nauk, 15:6(96) (1960),  133–136
  23. Equations with retarded argument

    Uch. Zap. Mosk. Gos. Univ., 186 (1959),  205–209
  24. On the general theory of equations involving a deviating argument

    Dokl. Akad. Nauk SSSR, 120:4 (1958),  697–700
  25. On existence and uniqueness of solutions of differential-difference equations of neutral type

    Uch. Zap. Mosk. Gos. Univ., 181 (1956),  83–89
  26. On the asymptotic behavior of solutions of linear differential equations of the second order with retarded argument

    Uch. Zap. Mosk. Gos. Univ., 165 (1954),  195–204

  27. Lev Èrnestovich El'sgol'ts (obituary)

    Uspekhi Mat. Nauk, 23:2(140) (1968),  193–200
  28. Ê. W. Anderson, D. W. Íàll. Sets, sequences, and mappings. The basic concepts of analysis. Book Review

    Zh. Vychisl. Mat. Mat. Fiz., 3:5 (1963),  975–976


© Steklov Math. Inst. of RAS, 2026