RUS  ENG
Full version
PEOPLE

Izmailov Alexey Feridovich

Publications in Math-Net.Ru

  1. Globalized piecewise Levenberg–Marquardt method with a procedure for avoiding convergence to nonstationary points

    Russian Universities Reports. Mathematics, 30:152 (2025),  346–360
  2. Hybrid globalization of convergence of the Levenberg-Marquardt method for equality-constrained optimization problems

    Russian Universities Reports. Mathematics, 30:149 (2025),  41–55
  3. Accelerating convergence of Newton-type methods to singular solutions of nonlinear equations

    Russian Universities Reports. Mathematics, 29:148 (2024),  401–424
  4. Globalizing convergence of piecewise Newton methods

    Russian Universities Reports. Mathematics, 29:146 (2024),  149–163
  5. Reduced Hessian methods as a perturbed Newton–Lagrange method

    Russian Universities Reports. Mathematics, 29:145 (2024),  51–64
  6. Hybrid globalization of convergence of subspace-stabilized sequential quadratic programming method

    Russian Universities Reports. Mathematics, 24:126 (2019),  150–165
  7. Levenberg–Marquardt method for unconstrained optimization

    Russian Universities Reports. Mathematics, 24:125 (2019),  60–74
  8. New implementations of the 2-factor method

    Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015),  933–946
  9. On the sensitivity of a Euclidean projection

    Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  392–403
  10. Multiplier methods for optimization problems with Lipschitzian derivatives

    Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012),  2140–2148
  11. On the influence of the critical Lagrange multipliers on the convergence rate of the multiplier method

    Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012),  1959–1975
  12. On active-set methods for the quadratic programming problem

    Zh. Vychisl. Mat. Mat. Fiz., 52:4 (2012),  602–613
  13. On the application of Newton-type methods to Fritz John optimality conditions

    Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011),  1194–1208
  14. A semismooth sequential quadratic programming method for lifted mathematical programs with vanishing constraints

    Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011),  983–1006
  15. On the limiting properties of dual trajectories in the Lagrange multipliers method

    Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011),  3–23
  16. Semismooth Newton method for quadratic programs with bound constraints

    Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009),  1785–1795
  17. Optimality conditions and newton-type methods for mathematical programs with vanishing constraints

    Zh. Vychisl. Mat. Mat. Fiz., 49:7 (2009),  1184–1196
  18. A new technique for avoiding the Maratos effect

    Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009),  241–254
  19. Exact penalties for optimization problems with 2-regular equality constraints

    Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008),  365–372
  20. On the Newton-type method with admissible trajectories for mixed complementatiry problems

    Avtomat. i Telemekh., 2007, no. 2,  152–161
  21. Necessary Conditions for an Extremum in a Mathematical Programming Problem

    Trudy Mat. Inst. Steklova, 256 (2007),  6–30
  22. Defining systems and Newton-like methods for finding singular solutions to nonlinear boundary value problems

    Zh. Vychisl. Mat. Mat. Fiz., 47:9 (2007),  1467–1485
  23. The Gauss–Newton method for finding singular solutions to systems of nonlinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007),  784–795
  24. Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications

    Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007),  555–577
  25. Newton-type methods for constrained optimization with nonregular constraints

    Zh. Vychisl. Mat. Mat. Fiz., 46:8 (2006),  1369–1391
  26. On the analytical and numerical stability of critical Lagrange multipliers

    Zh. Vychisl. Mat. Mat. Fiz., 45:6 (2005),  966–982
  27. On convergence rate estimates for power penalty methods

    Zh. Vychisl. Mat. Mat. Fiz., 44:10 (2004),  1770–1781
  28. Optimization problems with complementary constraints: regularity, optimality conditions and sensibility

    Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004),  1209–1228
  29. Sensitivity analysis for abnormal optimization problems with a cone constraint

    Zh. Vychisl. Mat. Mat. Fiz., 44:4 (2004),  586–608
  30. Mixed complementary problems: regularity, estimates of the distance to the solution, and Newton's Methods

    Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004),  51–69
  31. The sensitivity theory for abnormal optimization problems with equality constraints

    Zh. Vychisl. Mat. Mat. Fiz., 43:2 (2003),  186–202
  32. Checking the sign-definiteness of forms

    Zh. Vychisl. Mat. Mat. Fiz., 42:6 (2002),  800–814
  33. Construction of defining systems for finding singular solutions to nonlinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 42:1 (2002),  10–22
  34. On the Andronov–Hopf Bifurcation Theorem

    Differ. Uravn., 37:5 (2001),  609–615
  35. Theorems on the representation of nonlinear mapping families and implicit function theorems

    Mat. Zametki, 67:1 (2000),  57–68
  36. An approach to finding singular solutions to a general system of nonlinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 40:3 (2000),  365–377
  37. 2-regularity and bifurcation theorems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 65 (1999),  90–117
  38. Optimality conditions in extremal problems with nonregular inequality constraints

    Mat. Zametki, 66:1 (1999),  89–101
  39. Gradient method for linear approximate schemes

    Zh. Vychisl. Mat. Mat. Fiz., 39:10 (1999),  1625–1632
  40. On the stabilizing properties of the gradient method for unstable approximate schemes

    Zh. Vychisl. Mat. Mat. Fiz., 39:9 (1999),  1453–1463
  41. Singular solutions of parametric equations and the method of artificial parametrization

    Zh. Vychisl. Mat. Mat. Fiz., 39:8 (1999),  1283–1289
  42. Stable singular solutions of nonlinear operator equations with a parameter

    Zh. Vychisl. Mat. Mat. Fiz., 39:5 (1999),  707–717
  43. On the gradient method in a Hilbert space in the case of nonisolated minima

    Zh. Vychisl. Mat. Mat. Fiz., 39:4 (1999),  549–552
  44. Some generalizations of the Morse lemma

    Trudy Mat. Inst. Steklova, 220 (1998),  142–156
  45. Application of nonsmooth optimization methods to solving nonlinear operator equations

    Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998),  1452–1460
  46. Justification of the quadrature method for nonlinear integral equations

    Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1153–1161
  47. On the convergence of descent methods

    Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998),  903–911
  48. Methods for finding singular solutions of nonlinear operator equations in the absence of 2-regularity

    Zh. Vychisl. Mat. Mat. Fiz., 37:10 (1997),  1157–1162
  49. Attractors of iterative processors in the presence of noises

    Zh. Vychisl. Mat. Mat. Fiz., 37:8 (1997),  908–913
  50. Methods for solving nonlinear operator equations with singular Fredholm derivatives

    Zh. Vychisl. Mat. Mat. Fiz., 37:2 (1997),  145–152
  51. Stable methods for finding 2-regular solutions of nonlinear operator equations

    Zh. Vychisl. Mat. Mat. Fiz., 36:9 (1996),  22–34
  52. On a local regularization of some classes of nonlinear operator equations

    Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996),  15–29
  53. On higher-order methods for finding singular solutions of nonlinear operator equations

    Zh. Vychisl. Mat. Mat. Fiz., 36:5 (1996),  20–29
  54. On Lagrange methods for finding degenerate solutions of constrained extremum problems

    Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996),  10–17
  55. The $2$-factor method and multipoint boundary value problems

    Zh. Vychisl. Mat. Mat. Fiz., 35:11 (1995),  1603–1614
  56. Optimality conditions for degenerate extremum problems with inequality-type constraints

    Zh. Vychisl. Mat. Mat. Fiz., 34:6 (1994),  837–854
  57. The method of gradient descent for minimizing non-convex functions

    Zh. Vychisl. Mat. Mat. Fiz., 34:3 (1994),  344–359
  58. Factor analysis of nonlinear mappings and generalization of the notion of 2-regularity

    Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993),  631–634
  59. The reversibility of homogeneous polynomial mappings of degree $p$

    Zh. Vychisl. Mat. Mat. Fiz., 33:3 (1993),  323–334
  60. Second order optimization methods

    Zh. Vychisl. Mat. Mat. Fiz., 33:2 (1993),  163–178
  61. Degenerate extremum problems with inequality-type constraints

    Zh. Vychisl. Mat. Mat. Fiz., 32:10 (1992),  1570–1581
  62. Necessary higher-order conditions in extremum problems

    Zh. Vychisl. Mat. Mat. Fiz., 32:8 (1992),  1310–1313
  63. Derivation of the indirect interaction operator by the path integral method. Exact results in the $s-d$ exchange model

    TMF, 80:3 (1989),  405–417


© Steklov Math. Inst. of RAS, 2026