|
|
Publications in Math-Net.Ru
-
Globalized piecewise Levenberg–Marquardt method
with a procedure for avoiding convergence to nonstationary points
Russian Universities Reports. Mathematics, 30:152 (2025), 346–360
-
Hybrid globalization of convergence of the Levenberg-Marquardt method for equality-constrained optimization problems
Russian Universities Reports. Mathematics, 30:149 (2025), 41–55
-
Accelerating convergence of Newton-type methods to singular solutions of nonlinear equations
Russian Universities Reports. Mathematics, 29:148 (2024), 401–424
-
Globalizing convergence of piecewise Newton methods
Russian Universities Reports. Mathematics, 29:146 (2024), 149–163
-
Reduced Hessian methods as a perturbed Newton–Lagrange method
Russian Universities Reports. Mathematics, 29:145 (2024), 51–64
-
Hybrid globalization of convergence of subspace-stabilized sequential quadratic programming method
Russian Universities Reports. Mathematics, 24:126 (2019), 150–165
-
Levenberg–Marquardt method for unconstrained optimization
Russian Universities Reports. Mathematics, 24:125 (2019), 60–74
-
New implementations of the 2-factor method
Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015), 933–946
-
On the sensitivity of a Euclidean projection
Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014), 392–403
-
Multiplier methods for optimization problems with Lipschitzian derivatives
Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012), 2140–2148
-
On the influence of the critical Lagrange multipliers on the convergence rate of the multiplier method
Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012), 1959–1975
-
On active-set methods for the quadratic programming problem
Zh. Vychisl. Mat. Mat. Fiz., 52:4 (2012), 602–613
-
On the application of Newton-type methods to Fritz John optimality conditions
Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011), 1194–1208
-
A semismooth sequential quadratic programming method for lifted mathematical programs with vanishing constraints
Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011), 983–1006
-
On the limiting properties of dual trajectories in the Lagrange multipliers method
Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011), 3–23
-
Semismooth Newton method for quadratic programs with bound constraints
Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009), 1785–1795
-
Optimality conditions and newton-type methods for mathematical programs with vanishing constraints
Zh. Vychisl. Mat. Mat. Fiz., 49:7 (2009), 1184–1196
-
A new technique for avoiding the Maratos effect
Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009), 241–254
-
Exact penalties for optimization problems with 2-regular equality constraints
Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008), 365–372
-
On the Newton-type method with admissible trajectories for mixed complementatiry problems
Avtomat. i Telemekh., 2007, no. 2, 152–161
-
Necessary Conditions for an Extremum in a Mathematical Programming Problem
Trudy Mat. Inst. Steklova, 256 (2007), 6–30
-
Defining systems and Newton-like methods for finding singular solutions to nonlinear boundary value problems
Zh. Vychisl. Mat. Mat. Fiz., 47:9 (2007), 1467–1485
-
The Gauss–Newton method for finding singular solutions to systems of nonlinear equations
Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007), 784–795
-
Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications
Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007), 555–577
-
Newton-type methods for constrained optimization with nonregular constraints
Zh. Vychisl. Mat. Mat. Fiz., 46:8 (2006), 1369–1391
-
On the analytical and numerical stability of critical Lagrange multipliers
Zh. Vychisl. Mat. Mat. Fiz., 45:6 (2005), 966–982
-
On convergence rate estimates for power penalty methods
Zh. Vychisl. Mat. Mat. Fiz., 44:10 (2004), 1770–1781
-
Optimization problems with complementary constraints: regularity, optimality conditions and sensibility
Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004), 1209–1228
-
Sensitivity analysis for abnormal optimization problems with a cone constraint
Zh. Vychisl. Mat. Mat. Fiz., 44:4 (2004), 586–608
-
Mixed complementary problems: regularity, estimates of the distance to the solution, and Newton's Methods
Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004), 51–69
-
The sensitivity theory for abnormal optimization problems with equality constraints
Zh. Vychisl. Mat. Mat. Fiz., 43:2 (2003), 186–202
-
Checking the sign-definiteness of forms
Zh. Vychisl. Mat. Mat. Fiz., 42:6 (2002), 800–814
-
Construction of defining systems for finding singular solutions to nonlinear equations
Zh. Vychisl. Mat. Mat. Fiz., 42:1 (2002), 10–22
-
On the Andronov–Hopf Bifurcation Theorem
Differ. Uravn., 37:5 (2001), 609–615
-
Theorems on the representation of nonlinear mapping families and implicit function theorems
Mat. Zametki, 67:1 (2000), 57–68
-
An approach to finding singular solutions to a general system of nonlinear equations
Zh. Vychisl. Mat. Mat. Fiz., 40:3 (2000), 365–377
-
2-regularity and bifurcation theorems
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 65 (1999), 90–117
-
Optimality conditions in extremal problems with nonregular inequality constraints
Mat. Zametki, 66:1 (1999), 89–101
-
Gradient method for linear approximate schemes
Zh. Vychisl. Mat. Mat. Fiz., 39:10 (1999), 1625–1632
-
On the stabilizing properties of the gradient method for unstable approximate schemes
Zh. Vychisl. Mat. Mat. Fiz., 39:9 (1999), 1453–1463
-
Singular solutions of parametric equations and the method of artificial parametrization
Zh. Vychisl. Mat. Mat. Fiz., 39:8 (1999), 1283–1289
-
Stable singular solutions of nonlinear operator equations with a parameter
Zh. Vychisl. Mat. Mat. Fiz., 39:5 (1999), 707–717
-
On the gradient method in a Hilbert space in the case of nonisolated minima
Zh. Vychisl. Mat. Mat. Fiz., 39:4 (1999), 549–552
-
Some generalizations of the Morse lemma
Trudy Mat. Inst. Steklova, 220 (1998), 142–156
-
Application of nonsmooth optimization methods to solving nonlinear operator equations
Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998), 1452–1460
-
Justification of the quadrature method for nonlinear integral equations
Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998), 1153–1161
-
On the convergence of descent methods
Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998), 903–911
-
Methods for finding singular solutions of nonlinear operator equations in the absence of 2-regularity
Zh. Vychisl. Mat. Mat. Fiz., 37:10 (1997), 1157–1162
-
Attractors of iterative processors in the presence of noises
Zh. Vychisl. Mat. Mat. Fiz., 37:8 (1997), 908–913
-
Methods for solving nonlinear operator equations with singular Fredholm derivatives
Zh. Vychisl. Mat. Mat. Fiz., 37:2 (1997), 145–152
-
Stable methods for finding 2-regular solutions of nonlinear operator equations
Zh. Vychisl. Mat. Mat. Fiz., 36:9 (1996), 22–34
-
On a local regularization of some classes of nonlinear operator
equations
Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996), 15–29
-
On higher-order methods for finding singular solutions of nonlinear operator equations
Zh. Vychisl. Mat. Mat. Fiz., 36:5 (1996), 20–29
-
On Lagrange methods for finding degenerate solutions of constrained extremum problems
Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996), 10–17
-
The $2$-factor method and multipoint boundary value problems
Zh. Vychisl. Mat. Mat. Fiz., 35:11 (1995), 1603–1614
-
Optimality conditions for degenerate extremum problems with inequality-type constraints
Zh. Vychisl. Mat. Mat. Fiz., 34:6 (1994), 837–854
-
The method of gradient descent for minimizing non-convex functions
Zh. Vychisl. Mat. Mat. Fiz., 34:3 (1994), 344–359
-
Factor analysis of nonlinear mappings and generalization of the notion of 2-regularity
Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993), 631–634
-
The reversibility of homogeneous polynomial mappings of degree $p$
Zh. Vychisl. Mat. Mat. Fiz., 33:3 (1993), 323–334
-
Second order optimization methods
Zh. Vychisl. Mat. Mat. Fiz., 33:2 (1993), 163–178
-
Degenerate extremum problems with inequality-type constraints
Zh. Vychisl. Mat. Mat. Fiz., 32:10 (1992), 1570–1581
-
Necessary higher-order conditions in extremum problems
Zh. Vychisl. Mat. Mat. Fiz., 32:8 (1992), 1310–1313
-
Derivation of the indirect interaction operator by the path integral method. Exact results in the $s-d$ exchange model
TMF, 80:3 (1989), 405–417
© , 2026