RUS  ENG
Full version
PEOPLE

Srochko Vladimir Andreevich

Publications in Math-Net.Ru

  1. Parametric transformation of nonconvex optimal control problems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 241 (2025),  64–70
  2. Parametric regularization of the functional in a linear-quadratic optimal control problem

    Bulletin of Irkutsk State University. Series Mathematics, 49 (2024),  32–44
  3. Parametric transformation of a quadratic functional in a linear control system

    Bulletin of Irkutsk State University. Series Mathematics, 48 (2024),  21–33
  4. Resolution of linear-quadratic problems in a discrete-continuous format with external actions

    Bulletin of Irkutsk State University. Series Mathematics, 45 (2023),  24–36
  5. Parametric regularization of a linear-quadratic problem on a set of piecewise linear controls

    Bulletin of Irkutsk State University. Series Mathematics, 41 (2022),  57–68
  6. Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212 (2022),  84–91
  7. Solution of a Linear–Quadratic Problem on a Set of Piecewise Constant Controls with Parameterization of the Functional

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:3 (2022),  5–16
  8. Procedure for regularization of bilinear optimal control problems based on a finite-dimensional model

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:1 (2022),  179–187
  9. Resolution of a linear-quadratic optimal control problem based on finite-dimensional models

    Bulletin of Irkutsk State University. Series Mathematics, 37 (2021),  3–16
  10. On resolution of an extremum norm problem for the terminal state of a linear system

    Bulletin of Irkutsk State University. Series Mathematics, 34 (2020),  3–17
  11. Optimal control problems for the bilinear system of special structure

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 183 (2020),  130–138
  12. Parameterization of some control problems by linear systems

    Bulletin of Irkutsk State University. Series Mathematics, 30 (2019),  83–98
  13. Some modifications of Newton's method for solving systems of equations

    Bulletin of Irkutsk State University. Series Mathematics, 26 (2018),  91–104
  14. The simplest nonconvex control problem. The maximum principle and sufficient optimality conditions

    Bulletin of Irkutsk State University. Series Mathematics, 19 (2017),  184–194
  15. Optimal control problems for the bilinear system of special structure

    Bulletin of Irkutsk State University. Series Mathematics, 15 (2016),  78–91
  16. Optimality conditions for extremal controls in bilinear and quadratic problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 5,  86–92
  17. Optimality conditions of the maximum principle type in bilinear control problems

    Zh. Vychisl. Mat. Mat. Fiz., 56:12 (2016),  2054–2064
  18. Sufficient optimality conditions for a class of nonconvex control problems

    Zh. Vychisl. Mat. Mat. Fiz., 55:10 (2015),  1670–1680
  19. Sufficient Optimality Conditions Based on Functional Increment Formulas in Control Problems

    Bulletin of Irkutsk State University. Series Mathematics, 8 (2014),  125–140
  20. Sufficient optimality conditions for extremal controls based on functional increment formulas

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8,  96–102
  21. On numerical solution of some problems of minimax control

    Avtomat. i Telemekh., 2013, no. 6,  17–25
  22. Linear-quadratic problem of optimal control: justification and convergence of nonlocal methods

    Bulletin of Irkutsk State University. Series Mathematics, 6:1 (2013),  89–100
  23. On solving the optimization problem for chemotherapy process in terms of the maximum principle

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 7,  63–67
  24. Extremal controls in the optimization problem for therapy process

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2012, no. 3,  113–119
  25. Some issues of search of extremal processes in nonconvex problems of optimal control

    Avtomat. i Telemekh., 2011, no. 6,  140–150
  26. Methods of bilinear approximations for solving optimal control problems

    Bulletin of Irkutsk State University. Series Mathematics, 4:3 (2011),  146–157
  27. Optimality condition and method of searching extreme points in ellipsoidal norm maximization problem

    Bulletin of Irkutsk State University. Series Mathematics, 3:3 (2010),  93–104
  28. Improvement of extreme controls and the steepest ascent method in the norm maximization problem on the reachable set

    Zh. Vychisl. Mat. Mat. Fiz., 50:5 (2010),  848–859
  29. Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 1,  3–43
  30. Method for nonlocal improvement of extreme controls in the maximization of the terminal state norm

    Zh. Vychisl. Mat. Mat. Fiz., 49:5 (2009),  791–804
  31. The bilinearization method for solving problems of the optimization of programmed controls

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 12,  63–69
  32. The method of complete quadratic approximation in optimal control problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 1,  87–93
  33. Modernization of gradient-type methods in optimal control problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 12,  66–78
  34. Iterative procedures for solving optimal control problems based on quasigradient approximations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12,  55–67
  35. Methods for the nonlocal improvement of admissible controls in linear problems with delay

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 12,  78–88
  36. Regularization of the maximum principle and of improvement methods in quadratic optimal control problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 12,  82–92
  37. The projection method in linear-quadratic problems of optimal control

    Zh. Vychisl. Mat. Mat. Fiz., 38:4 (1998),  564–572
  38. A quasigradient method for solving optimal control problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12,  84–91
  39. The quadratic phase approximation method for solving optimal control problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 12,  81–88
  40. The phase linearization method in optimal control problems with a free right end

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 7,  70–77
  41. The solution of optimal control problems using linearization methods

    Zh. Vychisl. Mat. Mat. Fiz., 32:7 (1992),  979–991
  42. The method of successive approximations in optimal control problems with boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 26:4 (1986),  508–520
  43. Necessary conditions for optimality for hyperbolic systems with distributed parameters under constraints on the state

    Upravliaemie systemy, 1984, no. 24,  85–93
  44. A dual method of numerical solution of optimal control problems in linear systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 6,  78–81
  45. Optimality conditions of the maximum principle type in Goursat–Darboux systems

    Sibirsk. Mat. Zh., 25:1 (1984),  126–132
  46. On the solution of optimal control problems with phase inequality-constraints on the right end

    Upravliaemie systemy, 1979, no. 19,  65–77
  47. On the optimization of a class of controllable processes with distributed parameters

    Sibirsk. Mat. Zh., 19:2 (1978),  466–470
  48. On the optimality of singular controls in systems with after-effect

    Differ. Uravn., 12:12 (1976),  2275–2278
  49. Optimality conditions for a certain class of systems with distributed parameters

    Sibirsk. Mat. Zh., 17:5 (1976),  1108–1115
  50. An investigation of the second variation on singular controls

    Differ. Uravn., 10:6 (1974),  1050–1066
  51. A connection between two necessary conditions for the optimality of singular controls

    Differ. Uravn., 6:2 (1970),  387–389
  52. The study of singular controls by means of a variation packet

    Differ. Uravn., 6:2 (1970),  260–275

  53. On the occasion of the 80th birthday of professor O. V. Vasiliev (1939–2002)

    Bulletin of Irkutsk State University. Series Mathematics, 30 (2019),  141–150
  54. Rafail Gabasov — on the occasion of the 80th birthday

    Bulletin of Irkutsk State University. Series Mathematics, 15 (2016),  108–120
  55. On the 75th anniversary of professor O. V. Vasiliev (1939–2002)

    Bulletin of Irkutsk State University. Series Mathematics, 8 (2014),  1–4


© Steklov Math. Inst. of RAS, 2026