RUS  ENG
Full version
PEOPLE

Korpusov Maxim Olegovich

Publications in Math-Net.Ru

  1. On the global solvability in time of a system of equations of an ambipolar diffusion with heating

    Mat. Zametki, 118:5 (2025),  739–747
  2. Blow-up of Solutions of the Cauchy Problem for the Doubly Nonlinear Equation of a Thermoelectric Model

    Mat. Zametki, 118:2 (2025),  169–176
  3. Blow-up of the solution to the Cauchy problem for one $(N+1)$-dimensional composite-type equation with gradient nonlinearity

    TMF, 225:1 (2025),  138–158
  4. On the solvability of the Cauchy problem for a thermal–electrical model

    TMF, 222:2 (2025),  217–232
  5. On time-global solvability of the Cauchy problem for one nonlinear equation of the drift-diffusion model of a semiconductor

    Zh. Vychisl. Mat. Mat. Fiz., 65:8 (2025),  1351–1372
  6. On time-global solvability of one Cauchy problem for a nonlinear equation of composite type of the heat-electric model

    Zh. Vychisl. Mat. Mat. Fiz., 65:8 (2025),  1328–1350
  7. On the destruction of solutions to Cauchy problems for nonlinear ferrite equations in $(N + 1)$-dimensional case

    Zh. Vychisl. Mat. Mat. Fiz., 65:4 (2025),  471–493
  8. On the Existence of a Nonextendable Solution of the Cauchy problem for a $(1+1)$-Dimensional Thermal-Electrical Model

    Mat. Zametki, 115:5 (2024),  645–657
  9. On the existence of a nonextendable solution of the Cauchy problem for a $(3+1)$-dimensional thermal–electrical model

    TMF, 221:3 (2024),  702–715
  10. On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model

    TMF, 219:2 (2024),  249–262
  11. On calculating of functional derivative for an optimal control problem

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:2 (2024),  51–67
  12. Numerical diagnostics of solution blow-up in a thermoelectric semiconductor model

    Zh. Vychisl. Mat. Mat. Fiz., 64:7 (2024),  1314–1322
  13. On the Blow-Up of the Solution of a Nonlinear System of Equations of a Thermal-Electrical Model

    Mat. Zametki, 114:5 (2023),  759–772
  14. Global-in-time solvability of a nonlinear system of equations of a thermal–electrical model with quadratic nonlinearity

    TMF, 217:2 (2023),  378–390
  15. Local solvability, blow-up, and Hölder regularity of solutions to some Cauchy problems for nonlinear plasma wave equations: III. Cauchy problems

    Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023),  1109–1127
  16. On critical exponents for weak solutions of the Cauchy problem for a $(2+1)$-dimensional nonlinear composite-type equation with gradient nonlinearity

    Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023),  1006–1021
  17. Blow-up of solutions and local solvability of an abstract Cauchy problem of second order with a noncoercive source

    Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023),  573–583
  18. Local solvability, blow-up, and Hölder regularity of solutions to some Cauchy problems for nonlinear plasma wave equations: II. Potential theory

    Zh. Vychisl. Mat. Mat. Fiz., 63:2 (2023),  282–316
  19. On Cauchy problems for nonlinear Sobolev equations in ferroelectricity theory

    Zh. Vychisl. Mat. Mat. Fiz., 63:1 (2023),  123–144
  20. On the blowup of solutions of the Cauchy problem for nonlinear equations of ferroelectricity theory

    TMF, 212:3 (2022),  327–339
  21. Local solvability, blow-up, and Hölder regularity of solutions to some Cauchy problems for nonlinear plasma wave equations: I. Green formulas

    Zh. Vychisl. Mat. Mat. Fiz., 62:10 (2022),  1639–1661
  22. Blow-up of weak solutions of the Cauchy problem for $(3+1)$-dimensional equation of plasma drift waves

    Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022),  124–158
  23. On critical exponents for weak solutions of the Cauchy problem for a non-linear equation of composite type

    Izv. RAN. Ser. Mat., 85:4 (2021),  96–136
  24. On the critical exponent “instantaneous blow-up” versus “local solubility” in the Cauchy problem for a model equation of Sobolev type

    Izv. RAN. Ser. Mat., 85:1 (2021),  118–153
  25. Nonlinear equations of the theory of ion-sound plasma waves

    Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021),  1927–1936
  26. Potential theory and Schauder estimate in Hölder spaces for $(3 + 1)$-dimensional Benjamin–Bona–Mahoney–Burgers equation

    Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021),  1309–1335
  27. Blow-up and global solubility in the classical sense of the Cauchy problem for a formally hyperbolic equation with a non-coercive source

    Izv. RAN. Ser. Mat., 84:5 (2020),  119–150
  28. Blow-up instability in non-linear wave models with distributed parameters

    Izv. RAN. Ser. Mat., 84:3 (2020),  15–70
  29. On blow-up of solutions of the Cauchy problems for a class of nonlinear equations of ferrite theory

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 185 (2020),  79–131
  30. Analytical-numerical study of finite-time blow-up of the solution to the initial-boundary value problem for the nonlinear Klein–Gordon equation

    Zh. Vychisl. Mat. Mat. Fiz., 60:9 (2020),  1503–1512
  31. Instantaneous blow-up versus local solubility of the Cauchy problem for a two-dimensional equation of a semiconductor with heating

    Izv. RAN. Ser. Mat., 83:6 (2019),  104–132
  32. Blowup solutions of the nonlinear Thomas equation

    TMF, 201:1 (2019),  54–64
  33. A study of self-oscillation instability in varicap-based electrical networks: analytical and numerical approaches

    Num. Meth. Prog., 20:3 (2019),  323–336
  34. Diagnostics of instant decomposition of solution in the nonlinear equation of theory of waves in semiconductors

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:4 (2019),  104–113
  35. Potential theory for a nonlinear equation of the Benjamin–Bona–Mahoney–Burgers type

    Zh. Vychisl. Mat. Mat. Fiz., 59:11 (2019),  1915–1947
  36. Blow-up of solutions of nonclassical nonlocal nonlinear model equations

    Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019),  621–648
  37. On an instantaneous blow-up of solutions of evolutionary problems on the half-line

    Izv. RAN. Ser. Mat., 82:5 (2018),  61–77
  38. Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities

    Izv. RAN. Ser. Mat., 82:2 (2018),  43–78
  39. Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type

    TMF, 194:3 (2018),  403–417
  40. Analytic-numerical investigation of combustion in a nonlinear medium

    Zh. Vychisl. Mat. Mat. Fiz., 58:9 (2018),  1553–1563
  41. Solution blow-up in a nonlinear system of equations with positive energy in field theory

    Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018),  447–458
  42. Gradient blow-up in generalized Burgers and Boussinesq equations

    Izv. RAN. Ser. Mat., 81:6 (2017),  232–242
  43. On the Nonextendable Solution and Blow-Up of the Solution of the One-Dimensional Equation of Ion-Sound Waves in a Plasma

    Mat. Zametki, 102:3 (2017),  383–395
  44. Global unsolvability of a nonlinear conductor model in the quasistationary approximation

    TMF, 191:1 (2017),  3–13
  45. Local solvability and decay of the solution of an equation with quadratic noncoercive nonlineatity

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017),  107–123
  46. Instantaneous blow-up of classical solutions to the Cauchy problem for the Khokhlov–Zabolotskaya equation

    Zh. Vychisl. Mat. Mat. Fiz., 57:7 (2017),  1170–1175
  47. The finite-time blowup of the solution of an initial boundary-value problem for the nonlinear equation of ion sound waves

    TMF, 187:3 (2016),  447–454
  48. Blowup of the solution to the Cauchy problem with arbitrary positive energy for a system of Klein–Gordon equations in the de Sitter metric

    Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016),  1775–1779
  49. Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type

    Izv. RAN. Ser. Mat., 79:5 (2015),  103–162
  50. Global Unsolvability of One-Dimensional Problems for Burgers-Type Equations

    Mat. Zametki, 98:3 (2015),  448–462
  51. Blow-up of solutions of an abstract Cauchy problem for a formally hyperbolic equation with double non-linearity

    Izv. RAN. Ser. Mat., 78:5 (2014),  91–142
  52. Blow-up of solutions of non-linear equations of Kadomtsev–Petviashvili and Zakharov–Kuznetsov types

    Izv. RAN. Ser. Mat., 78:3 (2014),  79–110
  53. Blow-up of solutions of strongly dissipative generalized Klein–Gordon equations

    Izv. RAN. Ser. Mat., 77:2 (2013),  109–138
  54. On the Blow-Up of the Solution of an Equation Related to the Hamilton–Jacobi Equation

    Mat. Zametki, 93:1 (2013),  81–95
  55. Solution blow-up for a class of parabolic equations with double nonlinearity

    Mat. Sb., 204:3 (2013),  19–42
  56. Solution blowup for systems of shallow-water equations

    TMF, 177:2 (2013),  264–275
  57. Local solvability and solution blowup for the Benjamin–Bona–Mahony–Burgers equation with a nonlocal boundary condition

    TMF, 175:2 (2013),  159–172
  58. Blowup of solutions of nonlinear equations and systems of nonlinear equations in wave theory

    TMF, 174:3 (2013),  355–363
  59. Blow-up of ion-sound waves in plasma with non-linear sources on the boundary

    Izv. RAN. Ser. Mat., 76:2 (2012),  103–140
  60. On blowup of solutions to a Kirchhoff type dissipative wave equation with a source and positive energy

    Sibirsk. Mat. Zh., 53:4 (2012),  874–891
  61. Solution blowup for the heat equation with double nonlinearity

    TMF, 172:3 (2012),  339–343
  62. Blow-up of the solution of a nonlinear system of equations with positive energy

    TMF, 171:3 (2012),  355–369
  63. Blowup of a positive-energy solution of model wave equations in nonlinear dynamics

    TMF, 171:1 (2012),  3–17
  64. Blowup of solutions of the three-dimensional Rosenau–Burgers equation

    TMF, 170:3 (2012),  342–349
  65. The Destruction of the Solution of the Nonlocal Equation with Gradient Nonlinearity

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 11,  43–53
  66. Blow up of ion-acoustic waves in plasma with strong time-spatial dispertion

    Algebra i Analiz, 23:6 (2011),  96–130
  67. On the blow-up of internal gravitational waves with non-linear sources

    Izv. RAN. Ser. Mat., 75:4 (2011),  29–48
  68. On blowup of gravity-gyroscopic waves with nonlinear sources and sinks on the boundary

    Mat. Tr., 14:2 (2011),  83–126
  69. Blow-up of ion acoustic waves in a plasma

    Mat. Sb., 202:1 (2011),  37–64
  70. On blowup of solutions to a system of equations of ion sound waves in plasma

    Sibirsk. Mat. Zh., 52:3 (2011),  600–614
  71. Destruction of solutions of wave equations in systems with distributed parameters

    TMF, 167:2 (2011),  206–213
  72. On a nonlinear eigenmode problem in semiconductor theory

    Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011),  872–880
  73. On the uniqueness of the solution of a nonlinear eigenmode problem

    Zh. Vychisl. Mat. Mat. Fiz., 51:4 (2011),  642–646
  74. Finite-time relaxation of the solution of a nonlinear pseudoparabolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 51:3 (2011),  407–435
  75. Solution blow-up for a new stationary Sobolev-type equation

    Zh. Vychisl. Mat. Mat. Fiz., 50:5 (2010),  876–893
  76. Blow-up of Oskolkov's system of equations

    Mat. Sb., 200:4 (2009),  83–108
  77. One application of the energy method of a H.A. Levine

    Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11,  48–53
  78. Sufficient conditions for the blowup of a solution to the Boussinesq equation subject to a nonlinear Neumann boundary condition

    Zh. Vychisl. Mat. Mat. Fiz., 48:11 (2008),  2042–2045
  79. An initial-boundary value problem for a Sobolev-type strongly nonlinear dissipative equation

    Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008),  1860–1877
  80. Sufficient close-to-necessary conditions for the blowup of solutions to a strongly nonlinear generalized Boussinesq equation

    Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008),  1629–1637
  81. Traveling-wave solution to a nonlinear equation in semiconductors with strong spatial dispersion

    Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  808–812
  82. Blow-up of solutions of nonlinear Sobolev type equations with cubic sources

    Differ. Uravn., 42:3 (2006),  404–415
  83. “Destruction” of the solution of a strongly nonlinear equation of pseudoparabolic type with double nonlinearity

    Mat. Zametki, 79:6 (2006),  879–899
  84. Blow-up of solutions of abstract Cauchy problems for nonlinear operator-differential equations

    Dokl. Akad. Nauk, 401:1 (2005),  12–15
  85. Blow-Up of the Solution of an Initial-Boundary Value Problem for a Nonhomogeneous Equation of Pseudoparabolic Type

    Differ. Uravn., 41:6 (2005),  832–835
  86. Global Solvability Conditions for an Initial-Boundary Value Problem for a Nonlinear Equation of Pseudoparabolic Type

    Differ. Uravn., 41:5 (2005),  678–685
  87. Blow-up of solutions of a class of strongly non-linear dissipative wave equations of Sobolev type with sources

    Izv. RAN. Ser. Mat., 69:4 (2005),  89–128
  88. On the “Destruction” of Solutions of Nonlinear Wave Equations of Sobolev Type with Cubic Sources

    Mat. Zametki, 78:4 (2005),  559–578
  89. On a necessary and sufficient condition for a blowing up of a solution to a mixed boundary problem for a certain nonlinear equation of Sobolev type

    Sib. Èlektron. Mat. Izv., 2 (2005),  145–155
  90. On blowup of a solution to a Sobolev-type equation with a nonlocal source

    Sibirsk. Mat. Zh., 46:3 (2005),  567–578
  91. On the finite-time blowup of solutions to initial–boundary value problems for pseudoparabolic equations with pseudo-Laplacian

    Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005),  272–286
  92. On the blowup of solutions to semilinear pseudoparabolic equations with rapidly growing nonlinearities

    Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005),  145–155
  93. Blow-up of solutions of a class of strongly non-linear equations of Sobolev type

    Izv. RAN. Ser. Mat., 68:4 (2004),  151–204
  94. On the blow-up of the solution of an initial-boundary value problem for a nonlinear nonlocal equation of pseudo-parabolic type

    Zh. Vychisl. Mat. Mat. Fiz., 44:12 (2004),  2212–2219
  95. Three-dimensional nonlinear evolutionary pseudoparabolic equations in mathematical physics. II

    Zh. Vychisl. Mat. Mat. Fiz., 44:11 (2004),  2041–2048
  96. Finite-Time Blow-Up of the Solution of the Cauchy Problem for the Pseudoparabolic Equation $Au_t=F(u)$

    Differ. Uravn., 39:1 (2003),  78–83
  97. Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics

    Zh. Vychisl. Mat. Mat. Fiz., 43:12 (2003),  1835–1869
  98. Conditions for the global solvability of the Cauchy problem for a semilinear equation of pseudoparabolic type

    Zh. Vychisl. Mat. Mat. Fiz., 43:8 (2003),  1210–1222
  99. On the solvability of strongly nonlinear pseudoparabolic equation with double nonlinearity

    Zh. Vychisl. Mat. Mat. Fiz., 43:7 (2003),  987–1004
  100. On the existence of a solution to the Laplace equation with a nonlinear dynamic boundary condition

    Zh. Vychisl. Mat. Mat. Fiz., 43:1 (2003),  95–110
  101. Blow-up of a solution of a pseudoparabolic equation with the time derivative of a nonlinear elliptic operator

    Zh. Vychisl. Mat. Mat. Fiz., 42:12 (2002),  1788–1795
  102. Energy estimate of the solution to a nonlinear pseudoparabolic equation at $t\to\infty$

    Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1200–1206
  103. Global solvability of an initial-boundary value problem for a system of semilinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 42:7 (2002),  1039–1050
  104. Global solvability of pseudoparabolic nonlinear equations and blow-up of their solutions

    Zh. Vychisl. Mat. Mat. Fiz., 42:6 (2002),  849–866
  105. $\mathbb L^p$-stimates for solutions to initial and initial-boundary value problems for a semilinear system of reaction-diffusion equations in the limit of $t\to+\infty$

    Zh. Vychisl. Mat. Mat. Fiz., 42:1 (2002),  53–75
  106. On an initial-boundary value problem in magnetic hydrodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 41:11 (2001),  1734–1741
  107. On the global solvability of the initial-boundary value problem for a composite-type nonlinear equation

    Zh. Vychisl. Mat. Mat. Fiz., 41:6 (2001),  959–964
  108. On the asymptotic behavior of the solution to the Cauchy problem for the system of equations of ambipolar diffusion

    Zh. Vychisl. Mat. Mat. Fiz., 41:5 (2001),  783–795
  109. On the existence of a steady-state oscillation mode in the Cauchy problem for a composite-type equation

    Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001),  641–647
  110. Blowup in a finite time of the solution to the initial-boundary value problem for a semilinear composite type equation

    Zh. Vychisl. Mat. Mat. Fiz., 40:11 (2000),  1716–1724
  111. On quasi-steady processes in conducting nondispersive media

    Zh. Vychisl. Mat. Mat. Fiz., 40:8 (2000),  1237–1249
  112. Long-time asymptotics of an initial-boundary value problem for the two-dimensional Sobolev equation

    Differ. Uravn., 35:10 (1999),  1421–1425
  113. Asymptotics of the fundamental solution to the equation of two-dimensional internal waves and quasi-front phenomenon

    Zh. Vychisl. Mat. Mat. Fiz., 39:9 (1999),  1552–1557
  114. Unsteady waves in anisotropic dispersive media

    Zh. Vychisl. Mat. Mat. Fiz., 39:6 (1999),  1006–1022
  115. Oscillation of a set of curvilinear segments in a stratified fluid

    Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998),  1583–1591
  116. Unsteady waves in a stratified fluid excited by the variation of the normal velocity component on a line segment

    Zh. Vychisl. Mat. Mat. Fiz., 37:9 (1997),  1112–1121
  117. Oscillation of a two-sided line segment in a stratified fluid

    Zh. Vychisl. Mat. Mat. Fiz., 37:8 (1997),  968–974
  118. On the solvability of an initial-boundary value problem for the internal-wave equation

    Zh. Vychisl. Mat. Mat. Fiz., 37:5 (1997),  617–620


© Steklov Math. Inst. of RAS, 2026