RUS  ENG
Full version
PEOPLE

Sedov Andrey Ivanovich

Publications in Math-Net.Ru

  1. Prediction of multidimensional time series by method of inverse spectral problem

    J. Comp. Eng. Math., 9:1 (2022),  35–42
  2. Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:4 (2022),  34–39
  3. The use of the inverse problem of spectral analysis to forecast time series

    J. Comp. Eng. Math., 6:1 (2019),  74–78
  4. On calculation of eigenvalues and eigenfunctions of a discrete operator with a nuclear resolvent perturbed by a bounded operator

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:1 (2019),  16–23
  5. About the inverse problem of the spectral analysis

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 7,  91–99
  6. About the approximate solution of the inverse problem of the spectral analysis for Laplace operator

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 5,  73–78
  7. The inverse spectral problem for a power of the Laplace operator in the case of the Neuman problem on a parallelepiped

    Vestnik Chelyabinsk. Gos. Univ., 2008, no. 10,  63–67
  8. Estimation of the difference of spectral functions of the Legendre-type operators

    Fundam. Prikl. Mat., 6:4 (2000),  1075–1082
  9. An estimate for the difference of spectral functions of Gegenbauer-type operators in the norm of $L_q$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 8,  20–25
  10. Asymptotics of the eigenvalues of a singular differential operator of Jacobi type

    Dokl. Akad. Nauk, 353:3 (1997),  295–299
  11. The asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$

    Fundam. Prikl. Mat., 2:1 (1996),  309–312


© Steklov Math. Inst. of RAS, 2026