RUS  ENG
Full version
PEOPLE

Nechepurenko Yuri Mihailovich

Publications in Math-Net.Ru

  1. Optimal disturbances of stationary and periodic solutions to delay systems in mathematical immunology

    Zh. Vychisl. Mat. Mat. Fiz., 65:6 (2025),  918–945
  2. Spatial optimal disturbances of three-dimensional aerodynamic boundary layers

    Zh. Vychisl. Mat. Mat. Fiz., 65:1 (2025),  97–109
  3. Comparison of the costs for generating the Tollmien–Schlichting waves and optimal disturbances using optimal blowing-suction

    Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024),  18–21
  4. Automatic identification of separations of three-dimensional boundary layers

    Prikl. Mekh. Tekh. Fiz., 65:4 (2024),  139–151
  5. Integral criteria for the dichotomy quality in boundary-layer stability problems

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  155–170
  6. Structured pseudospectra in problems of spatial stability of boundary layers

    Zh. Vychisl. Mat. Mat. Fiz., 64:8 (2024),  1476–1485
  7. Numerical analysis of stationary solutions of systems with delayed argument in mathematical immunology

    CMFD, 68:4 (2022),  686–703
  8. Determination of threshold $N$-factors of the laminar-turbulent transition in a subsonic boundary layer on a prolate spheroid

    Prikl. Mekh. Tekh. Fiz., 62:6 (2021),  3–7
  9. Spectral analysis of optimal disturbances of stratified turbulent Couette flow

    Zh. Vychisl. Mat. Mat. Fiz., 61:1 (2021),  136–149
  10. Large-scale structures in stratified turbulent Couette flow and optimal disturbances

    Keldysh Institute preprints, 2019, 063, 31 pp.
  11. Numerical steady state analysis of the Marchuk–Petrov model of antiviral immune response

    Keldysh Institute preprints, 2019, 031, 26 pp.
  12. Bistability analysis of virus infection models with delayed arguments

    Keldysh Institute preprints, 2019, 017, 26 pp.
  13. Computation of optimal disturbances for delay systems

    Zh. Vychisl. Mat. Mat. Fiz., 59:5 (2019),  775–791
  14. Asymptotic boundary conditions for the analysis of hydrodynamic stability of flows in regions with open boundaries

    Keldysh Institute preprints, 2018, 129, 27 pp.
  15. Development and analysis of algorithms for computing optimal disturbances for delay systems

    Keldysh Institute preprints, 2018, 120, 26 pp.
  16. Numerical analysis of spatial hydrodynamic stability of shear flows in ducts of constant cross section

    Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018),  726–740
  17. Optimal perturbations of systems with delayed argument for control of dynamics of infectious diseases based on multicomponent actions

    CMFD, 63:3 (2017),  392–417
  18. Control of models of virus infections with delayed variables, based on optimal disturbances

    Keldysh Institute preprints, 2017, 052, 28 pp.
  19. Numerical modeling of generation and propagation of Görtler vortices

    Keldysh Institute preprints, 2016, 048, 37 pp.
  20. On computing the location of laminar-turbulent transition in compressible boundary layers

    Keldysh Institute preprints, 2015, 081, 21 pp.
  21. On stability of Poiseuille flow in a channel with surface ribbing

    Keldysh Institute preprints, 2014, 089, 20 pp.
  22. Hermitian Spectral Pseudoinversion and Its Applications

    Mat. Zametki, 96:1 (2014),  101–115
  23. Bi-Newton's method for computing spectral projectors

    Num. Meth. Prog., 15:1 (2014),  121–129
  24. Fast computation of optimal disturbances for duct flows with a given accuracy

    Zh. Vychisl. Mat. Mat. Fiz., 50:11 (2010),  2017–2027
  25. A technique for the numerical analysis of the riblet effect on the temporal stability of plane flows

    Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010),  1109–1125
  26. Upper bounds for the solution norms of the Hermitian ODAE systems

    Ufimsk. Mat. Zh., 1:4 (2009),  125–132
  27. Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections

    Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008),  1731–1747
  28. Spectral reduction for control systems modeling passive integrated circuits

    Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  746–762
  29. Finding the response matrix to the external action from a subspace for a discrete linear stochastic dynamical system

    Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006),  1219–1231
  30. Integral Criteria for the Quality of the Dichotomy of a Matrix Spectrum by a Closed Contour

    Mat. Zametki, 78:5 (2005),  718–726
  31. Convergence of the Newton–Kantorovich Method for Calculating Invariant Subspaces

    Mat. Zametki, 75:1 (2004),  109–114
  32. Finding a response matrix for a discrete linear dynamic stochastic system

    Zh. Vychisl. Mat. Mat. Fiz., 44:5 (2004),  817–826
  33. The Newton–Kantorovich method for computing invariant subspaces

    Zh. Vychisl. Mat. Mat. Fiz., 43:11 (2003),  1627–1641
  34. Estimates for the Norm of Green's Matrix Based on the Integral Performance Criterion for Dichotomy and Hausdorff Set Bounds

    Mat. Zametki, 71:2 (2002),  232–238
  35. Determination of a reactivity based on the inverse point kinetics equation

    Zh. Vychisl. Mat. Mat. Fiz., 42:9 (2002),  1394–1398
  36. Bounds for the convergence rate of Newton's method for calculating invariant subspaces

    Zh. Vychisl. Mat. Mat. Fiz., 42:6 (2002),  771–779
  37. Bounds for the matrix exponential based on the Lyapunov equation and limits of the Hausdorff set

    Zh. Vychisl. Mat. Mat. Fiz., 42:2 (2002),  131–141
  38. On the annular separation of a matrix spectrum

    Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000),  980–985
  39. Bounds for the principal and stiff components based on the integral performance criterion for dichotomy

    Zh. Vychisl. Mat. Mat. Fiz., 40:1 (2000),  35–42
  40. An implicit exhaustion method for partial generalized eigenvalue problems

    Zh. Vychisl. Mat. Mat. Fiz., 35:7 (1995),  1022–1033
  41. The singular-function method for computing the eigenvalues of polynomial matrices

    Zh. Vychisl. Mat. Mat. Fiz., 35:5 (1995),  646–660
  42. A polynomially stable fast parallel algorithm for tridiagonal systems

    Zh. Vychisl. Mat. Mat. Fiz., 26:7 (1986),  963–969
  43. Numerical stability of the marching method

    Zh. Vychisl. Mat. Mat. Fiz., 25:1 (1985),  3–11
  44. A factorization of elements of an inverse matrix

    Zh. Vychisl. Mat. Mat. Fiz., 24:4 (1984),  601–605

  45. Letter to the Editor

    Mat. Zametki, 72:2 (2002),  320


© Steklov Math. Inst. of RAS, 2026