RUS  ENG
Full version
PEOPLE

Znamenskaya Lyudmila Nikolaevna

Publications in Math-Net.Ru

  1. Control of a heat conduction process with a quadratic cost functional

    Zh. Vychisl. Mat. Mat. Fiz., 57:12 (2017),  2053–2064
  2. Boundary observability of elastic vibrations in a system of sequentially connected strings

    Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012),  1614–1620
  3. On the controllability of elastic oscillations of serially connected objects with distributed parameters

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  85–92
  4. Observability of oscillations of a network from the connected objects with the distributed and concentrated parameters in a point of connection

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 1,  142–146
  5. Observability of elastic oscillations of the network with distributed and concentrated parameters on free boundaries

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  76–81
  6. State observability of elastic vibrations in distributed and lumped parameter systems

    Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009),  1779–1784
  7. Controllability of vibrations of a net of coupled objects with distributed and lumped parameters

    Zh. Vychisl. Mat. Mat. Fiz., 49:5 (2009),  815–825
  8. Problems of boundary observability of elastic vibrations described by the system of telegrapher equations

    Avtomat. i Telemekh., 2007, no. 2,  103–112
  9. On boundary observability of elastic vibrations of connected objects with distributed and lumped parameters

    Avtomat. i Telemekh., 2007, no. 2,  95–102
  10. Two-end observability of elastic vibrations in distributed and lumped parameter systems

    Zh. Vychisl. Mat. Mat. Fiz., 47:6 (2007),  944–958
  11. Two-end controllability of elastic vibrations of systems with distributed and lumped parameters

    Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006),  2032–2044
  12. Controllability of vibrations of a system of objects with distributed and lumped parameters

    Zh. Vychisl. Mat. Mat. Fiz., 46:6 (2006),  1002–1018
  13. Control of vibrations of coupled objects with distributed and lumped parameters

    Zh. Vychisl. Mat. Mat. Fiz., 45:10 (2005),  1766–1784
  14. Generalized $L_2$ Solutions of Mixed Boundary Value Problems for the Wave Equation

    Differ. Uravn., 40:5 (2004),  673–680
  15. Generalized Solutions in $L_2$ of the Second Boundary Value Problem for the Wave Equation

    Differ. Uravn., 40:4 (2004),  539–546
  16. Constrained Controllability of String Vibrations in the Case of One Fixed Endpoint

    Differ. Uravn., 39:3 (2003),  377–382
  17. The Control of String Vibrations in the Class of Generalized Solutions in $L_2$

    Differ. Uravn., 38:5 (2002),  666–672
  18. Two-end boundary control of the wave equation in the class of generalized solutions in $L_2$

    Dokl. Akad. Nauk, 380:6 (2001),  746–748
  19. A priori Estimates of Generalized Solutions of the Wave Equation

    Differ. Uravn., 37:8 (2001),  1062–1070
  20. Projective convexity in $\mathbb{CP}^n$

    Sibirsk. Mat. Zh., 38:4 (1997),  790–806
  21. Spiral connectedness of the sections and projections of $\mathbb C$-convex sets

    Mat. Zametki, 59:3 (1996),  359–369
  22. Extrapolation of functions in the Denjoy class on a star-shaped compact set

    Mat. Zametki, 56:1 (1994),  16–25
  23. Criterion for holomorphic continuability of the functions of class $L^p$ defined on a portion of the Shilov boundary of a circular strongly starlike domain

    Sibirsk. Mat. Zh., 31:5 (1990),  175–177
  24. Interpolation of Gevrey class functions in a closed disk and ball

    Sibirsk. Mat. Zh., 31:4 (1990),  202–206
  25. Multidimensional analogues of the F. and M. Riesz theorem and Carleman's formula

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 7,  67–69
  26. Generalization of the theorem of F. and M. Riesz and the existence of the multidimensional Carleman formula

    Sibirsk. Mat. Zh., 29:4 (1988),  75–79
  27. Conditions for strong linear convexity of Hartogs compacta with curvilinear base

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 12,  32–35

  28. Russian Symposium “Control of Elastic Oscillations”

    Avtomat. i Telemekh., 2007, no. 2,  3–5
  29. Generalized Solutions in Control Problems (International Symposium GSCP-2002, Pereslavl-Zalesskii, August, 27–31, 2002)

    Differ. Uravn., 39:8 (2003),  1140–1143


© Steklov Math. Inst. of RAS, 2026