RUS  ENG
Full version
PEOPLE

Bunev Valery Aleksandrovich

Publications in Math-Net.Ru

  1. Numerical study of the effect of carbon oxide addition on dimethyl ether-air flames

    Fizika Goreniya i Vzryva, 60:3 (2024),  3–6
  2. Experimental and numerical study of combustion of rich mixtures of methyl alcohol and hydrogen with air

    Fizika Goreniya i Vzryva, 60:1 (2024),  13–17
  3. On the mechanism of promoting the autoignition of rich methanol-air mixtures by small additions of hydrogen peroxide

    Fizika Goreniya i Vzryva, 59:3 (2023),  32–35
  4. Simulation of hydrogen auto-ignition in a diesel engine

    Fizika Goreniya i Vzryva, 58:4 (2022),  79–90
  5. Synergetic effects in flames of mixtures of methane and carbon monoxide with air

    Fizika Goreniya i Vzryva, 57:5 (2021),  3–137
  6. On the nature of the synergistic effect in flames of methane and formaldehyde mixtures with air

    Fizika Goreniya i Vzryva, 56:4 (2020),  93–103
  7. Characteristics of combustion chemistry of rich methanol mixtures with air

    Fizika Goreniya i Vzryva, 56:1 (2020),  3–13
  8. Numerical investigation of the distribution of oxygen atoms in syngas combustion products

    Fizika Goreniya i Vzryva, 53:6 (2017),  3–9
  9. Numerical study of laminar rich hydrogen–air flames with added ethanol

    Fizika Goreniya i Vzryva, 52:3 (2016),  3–7
  10. Validation of a kinetic scheme for numerical investigation of hydrogen–methanol–air flames

    Fizika Goreniya i Vzryva, 52:2 (2016),  18–20
  11. Enthalpy distribution at the front of an one-dimensional laminar flame

    Fizika Goreniya i Vzryva, 52:1 (2016),  40–45
  12. Numerical study of the distribution of oxygen atoms in the combustion products of CO/H2/air flames

    Mendeleev Commun., 26:2 (2016),  163–165
  13. Numerical study of the combustion chemistry of fuel-rich mixtures of formaldehyde and air

    Fizika Goreniya i Vzryva, 51:6 (2015),  3–11
  14. Superadiabatic temperature phenomenon in the combustion processes due to a competition between chemical reactions

    Fizika Goreniya i Vzryva, 51:2 (2015),  14–22
  15. Distribution of O atoms from CH2O molecules in the combustion products of formaldehyde

    Mendeleev Commun., 25:2 (2015),  157–158
  16. Enthalpy Profile in a Flat Laminar Flame Front

    Mendeleev Commun., 23:1 (2013),  49–50
  17. Effect of initial temperature on the velocity of flame spread over a fuel film on a metal substrate

    Fizika Goreniya i Vzryva, 48:5 (2012),  87–96
  18. Dependence of the lower flammability limit on the initial temperature

    Fizika Goreniya i Vzryva, 48:2 (2012),  3–8
  19. Numerical Characteristics of the Low-Temperature Oxidation of Dimethyl Ether with Air

    Mendeleev Commun., 22:6 (2012),  338–339
  20. Promotion and inhibition of oxidation of rich hydrogen-air mixtures by nitric oxides (NO and NO$_2$) during adiabatic self-ignition

    Fizika Goreniya i Vzryva, 47:1 (2011),  22–29
  21. Numerical simulation of the effect of the addition of NO and NO$_2$ on a rich hydrogen flame using the tracer method

    Fizika Goreniya i Vzryva, 45:3 (2009),  19–25
  22. Effect of superadiabatic temperatures in the autoignition of dimethyl ether mixtures

    Mendeleev Commun., 19:5 (2009),  290–291
  23. Tracer method in numerical simulation of combustion processes

    Fizika Goreniya i Vzryva, 43:6 (2007),  3–12
  24. Selective oxidation of hydrogen in rich hydrogen–methane–air flames

    Fizika Goreniya i Vzryva, 43:5 (2007),  3–11
  25. Role of atomic hydrogen diffusion in a hydrogen flame

    Fizika Goreniya i Vzryva, 43:2 (2007),  3–9
  26. Chemical reactions in the low-temperature zone of a laminar rich propane–air flame

    Fizika Goreniya i Vzryva, 42:5 (2006),  14–19
  27. Role of atomic hydrogen diffusion in hydrogen flame inhibition

    Fizika Goreniya i Vzryva, 42:4 (2006),  3–7
  28. Effect of propylene additives on rich hydrogen–air flames

    Mendeleev Commun., 16:2 (2006),  104–105
  29. Selective diffusion during flame propagation and quenching in a porous medium

    Fizika Goreniya i Vzryva, 41:4 (2005),  50–59
  30. Specific features of the mechanism of flame propagation in rich hydrogen–propane–air mixtures

    Fizika Goreniya i Vzryva, 40:5 (2004),  30–41
  31. On the nature of superadiabatic temperatures in premixed rich hydrocarbon flames

    Fizika Goreniya i Vzryva, 40:1 (2004),  38–41
  32. Interaction of two diffusion flames spreading along a metal substrate wetted with different fuels

    Fizika Goreniya i Vzryva, 39:6 (2003),  28–37
  33. Surface effect on branching chain reactions in filtration combustion of gases

    Fizika Goreniya i Vzryva, 39:4 (2003),  77–82
  34. Existence of critical conditions of chain thermal explosion in flames

    Fizika Goreniya i Vzryva, 39:3 (2003),  120–126
  35. Estimation of the synergistic effect due to the action of composite suppressants on gas combustion

    Fizika Goreniya i Vzryva, 38:5 (2002),  3–10
  36. Filtration combustion of liquid monofuels

    Fizika Goreniya i Vzryva, 37:4 (2001),  34–40
  37. Estimation of the efficiency of inhibitors acting on combustion of gases

    Fizika Goreniya i Vzryva, 37:4 (2001),  15–24
  38. Diffusion combustion of a liquid fuel film on a metal substrate

    Fizika Goreniya i Vzryva, 36:5 (2000),  12–21
  39. Flame spread over liquid fuel films on metallic substrates

    Fizika Goreniya i Vzryva, 36:3 (2000),  25–30
  40. Behavior of flames propagating over liquid films with metallic substrates

    Fizika Goreniya i Vzryva, 34:3 (1998),  15–18
  41. Flame propagation in porous media wetted with fuel

    Fizika Goreniya i Vzryva, 33:3 (1997),  76–85
  42. Unsteady-state effects upon gas combustion in closed vessels with an inert porous medium

    Fizika Goreniya i Vzryva, 33:1 (1997),  24–32
  43. Gas combustion in a vessel with a highly porous inert medium

    Fizika Goreniya i Vzryva, 21:5 (1985),  17–22
  44. Flame zone in gas combustion in an inert porous medium

    Fizika Goreniya i Vzryva, 18:6 (1982),  20–23
  45. Synergy in flame-propagation processes

    Fizika Goreniya i Vzryva, 14:6 (1978),  26–28
  46. Limits of the propagation of a wave for single-component oxidizers

    Fizika Goreniya i Vzryva, 13:3 (1977),  465–467
  47. Intermediate product lifetimes in a reacting hydrogen-air mixture

    Fizika Goreniya i Vzryva, 12:4 (1976),  530–535
  48. Chain ignition of hydrogen at high degrees of burnup

    Fizika Goreniya i Vzryva, 11:5 (1975),  684–687
  49. Causes of deviations from Le Chatelier's principle for flame-propagation limits

    Fizika Goreniya i Vzryva, 11:1 (1975),  135–138
  50. Chain explosion in the oxidation of hydrogen for intense degrees of burn-up

    Fizika Goreniya i Vzryva, 10:3 (1974),  372–375
  51. Deviations from the Le Chatelier rule for the limits of the propagation of a flame

    Fizika Goreniya i Vzryva, 9:4 (1973),  605–607
  52. Low-temperature oxidation of hydrogen–air and methanol–air mixtures

    Fizika Goreniya i Vzryva, 8:2 (1972),  279–282
  53. Determination of the concentration limits of flame propagation at elevated temperatures

    Fizika Goreniya i Vzryva, 8:1 (1972),  82–86
  54. Autoignition limits of methanol and formaldehyde mixtures

    Fizika Goreniya i Vzryva, 5:1 (1969),  139–144
  55. Concentration limits of ignition of methanol and formaldehyde mixtures

    Fizika Goreniya i Vzryva, 2:4 (1966),  136–139


© Steklov Math. Inst. of RAS, 2026