RUS  ENG
Full version
PEOPLE

Derevtsov Evgeny Yurievich

Publications in Math-Net.Ru

  1. Unique recovery of a Lambertian curve from stereo-couple of images

    Mat. Tr., 27:3 (2024),  52–73
  2. Numerical reconstruction of a two-dimensional vector field from momentum ray transforms

    Sib. Zh. Ind. Mat., 27:4 (2024),  113–129
  3. Reconstruction of parameters of a set of radiant points from their images

    Mat. Tr., 26:2 (2023),  62–85
  4. Momentum ray transforms over planar tensor fields

    Sib. Zh. Ind. Mat., 26:3 (2023),  26–41
  5. Recovery of a vector field in the cylinder by its jointly known NMR images and ray transforms

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  86–103
  6. On the determination of the velocity and elastic parameters of the focal zone medium from the earthquake hodographs

    Sib. Zh. Ind. Mat., 24:4 (2021),  5–24
  7. On the angular moment operators of attenuated ray transforms of scalar 3D-fields

    Sib. Zh. Ind. Mat., 23:2 (2020),  51–62
  8. Determination of discontinuities of a function in a domain with refraction from its attenuated ray transform

    Sib. Zh. Ind. Mat., 21:4 (2018),  51–74
  9. On generalization of exponential ray transform in tomography

    Sib. J. Pure and Appl. Math., 18:4 (2018),  29–42
  10. Mathematical models and algorithms for reconstruction of singular support of functions and vector fields by tomographic data

    Eurasian Journal of Mathematical and Computer Applications, 3:4 (2015),  4–44
  11. Tomography of tensor fields in the plane

    Eurasian Journal of Mathematical and Computer Applications, 3:2 (2015),  25–69
  12. A difference approximation of the covariant derivative and other operators and geometric objects given in a Riemannian domain

    Sib. Èlektron. Mat. Izv., 12 (2015),  973–990
  13. Numerical solution of a problem of refractive tomography in a tube domain

    Sib. Zh. Ind. Mat., 18:4 (2015),  30–41
  14. Reconstruction of a singular support of a tensor field given in refractive medium by its ray transform

    Sib. Zh. Ind. Mat., 18:3 (2015),  11–25
  15. A numerical inversion of the ray transform operator in refraction tomography

    Sib. Èlektron. Mat. Izv., 11 (2014),  833–856
  16. Approximate recovery of a function given in a domain with low refraction from the ray integrals of the function

    Sib. Zh. Ind. Mat., 17:4 (2014),  48–59
  17. An Application of the SVD-Method to the Problem of Integral Geometry of 2-Tensor Fields

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:3 (2012),  73–94
  18. Reconstruction of vector fields and their singularities from ray transforms

    Sib. Zh. Vychisl. Mat., 14:1 (2011),  29–46
  19. Certain Criterion for the Horizontal Homogeneity of a Medium in Inverse Kinematic Problem of Seismics

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:3 (2011),  3–19
  20. Certain problems of non-scalar tomography

    Sib. Èlektron. Mat. Izv., 7 (2010),  81–111
  21. Some approaches to a reconstruction of a singular support of scalar, vector and tensor fields by their known tomographic data

    Sib. Èlektron. Mat. Izv., 5 (2008),  632–646
  22. Использование $B$-сплайнов в задаче эмиссионной $2D$-томографии в рефрагирующей среде

    Sib. Zh. Ind. Mat., 11:3 (2008),  45–60
  23. Numerical solution of an inverse kinematic seismic problem with internal sources

    Sib. Zh. Ind. Mat., 9:4 (2006),  3–26
  24. Approximate solution of the problem of the reconstruction of a tensor field of valence two using polynomial bases

    Sib. Zh. Ind. Mat., 5:1 (2002),  39–62
  25. Numerical solution to the vector tomography problem using polynomial basis

    Sib. Zh. Vychisl. Mat., 5:3 (2002),  233–254
  26. On the determination of an optical body in a homogeneous medium from its images

    Dokl. Akad. Nauk SSSR, 260:4 (1981),  799–803


© Steklov Math. Inst. of RAS, 2026