RUS  ENG
Full version
PEOPLE

Samokhin Vjacheslav Nicolaevich

Publications in Math-Net.Ru

  1. Nonclassical problems of the mathematical theory of hydrodynamic boundary layer

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1,  11–20
  2. On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics

    Zap. Nauchn. Sem. POMI, 536 (2024),  286–335
  3. О пограничном слое Марангони в вязкой неньютоновской среде

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  174–195
  4. Erratum to: On thermal boundary layer in a viscous non-Newtonian medium

    Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022),  486
  5. On thermal boundary layer in a viscous non-Newtonian medium

    Dokl. RAN. Math. Inf. Proc. Upr., 502 (2022),  28–33
  6. On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid

    Trudy Mat. Inst. Steklova, 310 (2020),  40–77
  7. Equations of symmetric MHD-boundary layer of viscous fluid with Ladyzhenskaya rheology law

    Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  72–90
  8. Equations of boundary layer for a generalized newtonian medium near a critical point

    Tr. Semim. im. I. G. Petrovskogo, 31 (2016),  158–176
  9. Equations of the boundary layer for a modified Navier-Stokes system

    Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  329–361
  10. Boundary Layer Formation in a Pseudoelastic Medium Under Gradual Acceleration

    Differ. Uravn., 40:3 (2004),  406–416
  11. The operator form and the solvability of magnetohydrodynamic equations for nonlinearly viscous media

    Differ. Uravn., 36:6 (2000),  816–821
  12. Equations of a magnetohydrodynamic boundary layer with diffraction conditions

    Differ. Uravn., 33:8 (1997),  1106–1113
  13. On a class of equations that generalize equations of polytropic filtration

    Differ. Uravn., 32:5 (1996),  643–651
  14. On the equations of polytropic filtration with a variable non-linearity

    Uspekhi Mat. Nauk, 49:3(297) (1994),  189–190
  15. On a system of equations of a magnetohydrodynamic boundary layer of a dilatant medium

    Differ. Uravn., 29:2 (1993),  328–336
  16. On the system of equations of the laminar boundary layer in the presence of injection of a non-Newtonian fluid

    Sibirsk. Mat. Zh., 34:1 (1993),  157–168
  17. On a problem with an unknown boundary in the hydrodynamics of electrically conducting media

    Uspekhi Mat. Nauk, 47:3(285) (1992),  173–174
  18. Stationary problems of the magnetohydrodynamics of non-Newtonian media

    Sibirsk. Mat. Zh., 33:4 (1992),  120–127
  19. On a system of equations in the magnetohydrodynamics of nonlinearly viscous media

    Differ. Uravn., 27:5 (1991),  886–896
  20. Existence of a solution of a modification of a system of equations of magnetohydrodynamics

    Mat. Sb., 182:3 (1991),  395–407
  21. Averaging of a system of Prandtl equations

    Differ. Uravn., 26:3 (1990),  495–501
  22. The mixing layer on the boundary between flows of two fluids with different properties

    Sibirsk. Mat. Zh., 30:2 (1989),  161–166
  23. Generalized solutions of a system of equations of the boundary layer of dilatant fluids, and the finite rate of perturbations

    Differ. Uravn., 23:6 (1987),  1053–1061
  24. A diffraction problem for strongly nonlinear equations

    Mat. Zametki, 42:2 (1987),  256–261
  25. On a system of boundary-layer equations of dilatant fluids

    Uspekhi Mat. Nauk, 41:5(251) (1986),  195–196
  26. Laminar mixing layer on the boundary of two flows

    Zh. Vychisl. Mat. Mat. Fiz., 25:4 (1985),  614–617
  27. Asymptotic expansions for the problem of boundary layer formation

    Zh. Vychisl. Mat. Mat. Fiz., 22:5 (1982),  1260–1265
  28. The system of equations of a boundary layer of a pseudoplastic fluid

    Dokl. Akad. Nauk SSSR, 210:5 (1973),  1043–1046
  29. Development of a plane-parallel symmetric boundary layer when a sudden motion arises

    Tr. Mosk. Mat. Obs., 28 (1973),  117–133
  30. Equations for the boundary layer for a pseudoplastic fluid in the neighborhood of a stopping point

    Uspekhi Mat. Nauk, 27:6(168) (1972),  249–250


© Steklov Math. Inst. of RAS, 2026