|
|
Publications in Math-Net.Ru
-
Nonclassical problems of the mathematical theory of hydrodynamic boundary layer
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1, 11–20
-
On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics
Zap. Nauchn. Sem. POMI, 536 (2024), 286–335
-
О пограничном слое Марангони в вязкой неньютоновской среде
Tr. Semim. im. I. G. Petrovskogo, 33 (2023), 174–195
-
Erratum to: On thermal boundary layer in a viscous non-Newtonian medium
Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022), 486
-
On thermal boundary layer in a viscous non-Newtonian medium
Dokl. RAN. Math. Inf. Proc. Upr., 502 (2022), 28–33
-
On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid
Trudy Mat. Inst. Steklova, 310 (2020), 40–77
-
Equations of symmetric MHD-boundary layer of viscous fluid with Ladyzhenskaya rheology law
Tr. Semim. im. I. G. Petrovskogo, 32 (2019), 72–90
-
Equations of boundary layer for a generalized newtonian medium near a critical point
Tr. Semim. im. I. G. Petrovskogo, 31 (2016), 158–176
-
Equations of the boundary layer for a modified Navier-Stokes system
Tr. Semim. im. I. G. Petrovskogo, 28 (2011), 329–361
-
Boundary Layer Formation in a Pseudoelastic Medium Under Gradual Acceleration
Differ. Uravn., 40:3 (2004), 406–416
-
The operator form and the solvability of magnetohydrodynamic equations for nonlinearly viscous media
Differ. Uravn., 36:6 (2000), 816–821
-
Equations of a magnetohydrodynamic boundary layer with diffraction conditions
Differ. Uravn., 33:8 (1997), 1106–1113
-
On a class of equations that generalize equations of polytropic filtration
Differ. Uravn., 32:5 (1996), 643–651
-
On the equations of polytropic filtration with a variable non-linearity
Uspekhi Mat. Nauk, 49:3(297) (1994), 189–190
-
On a system of equations of a magnetohydrodynamic boundary layer of a dilatant medium
Differ. Uravn., 29:2 (1993), 328–336
-
On the system of equations of the laminar boundary layer in the presence of injection of a non-Newtonian fluid
Sibirsk. Mat. Zh., 34:1 (1993), 157–168
-
On a problem with an unknown boundary in the hydrodynamics of electrically conducting media
Uspekhi Mat. Nauk, 47:3(285) (1992), 173–174
-
Stationary problems of the magnetohydrodynamics of non-Newtonian media
Sibirsk. Mat. Zh., 33:4 (1992), 120–127
-
On a system of equations in the magnetohydrodynamics of nonlinearly viscous media
Differ. Uravn., 27:5 (1991), 886–896
-
Existence of a solution of a modification of a system of equations of magnetohydrodynamics
Mat. Sb., 182:3 (1991), 395–407
-
Averaging of a system of Prandtl equations
Differ. Uravn., 26:3 (1990), 495–501
-
The mixing layer on the boundary between flows of two fluids with different properties
Sibirsk. Mat. Zh., 30:2 (1989), 161–166
-
Generalized solutions of a system of equations of the boundary layer of dilatant fluids, and the finite rate of perturbations
Differ. Uravn., 23:6 (1987), 1053–1061
-
A diffraction problem for strongly nonlinear equations
Mat. Zametki, 42:2 (1987), 256–261
-
On a system of boundary-layer equations of dilatant fluids
Uspekhi Mat. Nauk, 41:5(251) (1986), 195–196
-
Laminar mixing layer on the boundary of two flows
Zh. Vychisl. Mat. Mat. Fiz., 25:4 (1985), 614–617
-
Asymptotic expansions for the problem of boundary layer formation
Zh. Vychisl. Mat. Mat. Fiz., 22:5 (1982), 1260–1265
-
The system of equations of a boundary layer of a pseudoplastic fluid
Dokl. Akad. Nauk SSSR, 210:5 (1973), 1043–1046
-
Development of a plane-parallel symmetric boundary layer when a sudden motion arises
Tr. Mosk. Mat. Obs., 28 (1973), 117–133
-
Equations for the boundary layer for a pseudoplastic fluid in the neighborhood of a stopping point
Uspekhi Mat. Nauk, 27:6(168) (1972), 249–250
© , 2026