RUS  ENG
Full version
PEOPLE

Reinov Oleg Ivanovich

Publications in Math-Net.Ru

  1. On the distribution of eigenvalues of nuclear operators

    Funktsional. Anal. i Prilozhen., 58:3 (2024),  145–148
  2. Trace, determinant and eigenvalues of kernel operators

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 233 (2024),  56–74
  3. On the product of $l_{s,r}$-nuclear operators and operators close to them

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 207 (2022),  107–119
  4. A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property

    Mat. Zametki, 108:2 (2020),  252–259
  5. On the Product of $s$-Nuclear Operators

    Mat. Zametki, 107:2 (2020),  311–316
  6. On products of nuclear operators

    Funktsional. Anal. i Prilozhen., 51:4 (2017),  90–91
  7. Approximation properties $\mathrm{AP}_s$ and $p$-nuclear operators (the case where $0<s<1$)

    Zap. Nauchn. Sem. POMI, 270 (2000),  277–291
  8. On the Khinchin–Kahane inequality

    Algebra i Analiz, 10:1 (1998),  265–270
  9. Banach spaces without a local basis structure

    Mat. Zametki, 43:2 (1988),  220–228
  10. Metric space valued functions of the first Baire class and their applications

    Zap. Nauchn. Sem. LOMI, 135 (1984),  135–149
  11. How bad can a Banach space with the approximation property be?

    Mat. Zametki, 33:6 (1983),  833–846
  12. Banach spaces without approximation property

    Funktsional. Anal. i Prilozhen., 16:4 (1982),  84–85
  13. Properties of $p$-order approximation and the existence of non-$p$-nuclear operators with $p$-nuclear second conjugate operators

    Dokl. Akad. Nauk SSSR, 256:1 (1981),  43–47
  14. Some remarks on the properties of Radon–Nikodým operators with applications to a problem of M. Talagrand

    Sibirsk. Mat. Zh., 22:1 (1981),  120–128
  15. Conditionally weakly compact and $(RN)^D$-operators

    Funktsional. Anal. i Prilozhen., 14:1 (1980),  83–84
  16. Some vector-lattice characterizations of operators of type $RN$

    Mat. Zametki, 27:4 (1980),  607–619
  17. Integral representations of linear operators that act from the space $L^1(\Omega,\Sigma,\mu)$

    Mat. Zametki, 27:2 (1980),  283–290
  18. A class of universally measurable maps

    Mat. Zametki, 26:6 (1979),  949–955
  19. On hereditarily dentable sets in Banach spaces

    Zap. Nauchn. Sem. LOMI, 92 (1979),  294–299
  20. Tenson products of $p$-absolutely summing operators and right ($I_p$, $N_p$) multipliers

    Zap. Nauchn. Sem. LOMI, 92 (1979),  85–102
  21. Purely topological characteristics of operators of type $RN$

    Funktsional. Anal. i Prilozhen., 12:4 (1978),  89–90
  22. $RN$-sets in Banach spaces

    Funktsional. Anal. i Prilozhen., 12:1 (1978),  80–81
  23. Certain classes of continuous linear operations

    Mat. Zametki, 23:2 (1978),  285–296
  24. Operators of $RN$ type in Banach spaces

    Sibirsk. Mat. Zh., 19:4 (1978),  857–865
  25. Geometric characterization of $RN$-operators

    Mat. Zametki, 22:2 (1977),  189–202
  26. Certain classes of sets in Banach spaces and a topological characterization of operators of type $RN$

    Zap. Nauchn. Sem. LOMI, 73 (1977),  224–228
  27. Operators of type $RN$ in Banach spaces

    Dokl. Akad. Nauk SSSR, 220:3 (1975),  528–531
  28. The Radon–Nikodym property and integral representations of linear operators

    Funktsional. Anal. i Prilozhen., 9:4 (1975),  87–88

  29. Letter to the Editor

    Mat. Zametki, 115:2 (2024),  314


© Steklov Math. Inst. of RAS, 2026