RUS  ENG
Full version
PEOPLE

Trynin Alexandr Yurevich

Publications in Math-Net.Ru

  1. On one method for solving a mixed boundary value problem for a parabolic type equation using operators $\mathbb{AT}_{\lambda,j}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 2,  59–80
  2. A method for solution of a mixed boundary value problem for a hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$

    Izv. RAN. Ser. Mat., 87:6 (2023),  121–149
  3. On the best polynomials approximation of segment functions

    Vladikavkaz. Mat. Zh., 25:1 (2023),  105–111
  4. On a method for solving a mixed boundary value problem for a parabolic equation using modified sinc-approximation operators

    Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023),  1156–1176
  5. On the convergence of generalizations of the sinc approximations on the Privalov–Chanturia class

    Sib. Zh. Ind. Mat., 24:3 (2021),  122–137
  6. On the uniform approximation of functions of bounded variation by Lagrange interpolation polynomials with a matrix ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ of Jacobi nodes

    Izv. RAN. Ser. Mat., 84:6 (2020),  197–222
  7. The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange–Sturm–Liouville

    Izv. Saratov Univ. Math. Mech. Inform., 20:1 (2020),  51–63
  8. A criterion of convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of variation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 8,  61–74
  9. Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class

    Ufimsk. Mat. Zh., 10:2 (2018),  93–108
  10. Convergence of the Lagrange–Sturm–Liouville processes for continuous functions of bounded variation

    Vladikavkaz. Mat. Zh., 20:4 (2018),  76–91
  11. Sufficient condition for convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of continuity

    Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018),  1780–1793
  12. Necessary and sufficient conditions for the uniform on a segment sinc-approximations functions of bounded variation

    Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016),  288–298
  13. Approximation of continuous on a segment functions with the help of linear combinations of sincs

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 3,  72–81
  14. On necessary and sufficient conditions for convergence of sinc-approximations

    Algebra i Analiz, 27:5 (2015),  170–194
  15. On some properties of sinc approximations of continuous functions on the interval

    Ufimsk. Mat. Zh., 7:4 (2015),  116–132
  16. On inverse nodal problem for Sturm-Liouville operator

    Ufimsk. Mat. Zh., 5:4 (2013),  116–129
  17. On operators of interpolation with respect to solutions of a Cauchy problem and Lagrange–Jacobi polynomials

    Izv. RAN. Ser. Mat., 75:6 (2011),  129–162
  18. Differential properties of zeros of eigenfunctions of the Sturm–Liouville problem

    Ufimsk. Mat. Zh., 3:4 (2011),  133–143
  19. On divergence of sinc-approximations everywhere on $(0,\pi)$

    Algebra i Analiz, 22:4 (2010),  232–256
  20. The divergence of Lagrange interpolation processes in eigenfunctions of the Sturm–Liouville problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 11,  74–85
  21. Asymptotic behavior of the solutions and nodal points of Sturm–Liouville differential expressions

    Sibirsk. Mat. Zh., 51:3 (2010),  662–675
  22. A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval

    Mat. Sb., 200:11 (2009),  61–108
  23. A criterion for the uniform convergence of sinc-approximations on a segment

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 6,  66–78
  24. Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval

    Mat. Sb., 198:10 (2007),  141–158
  25. Estimates for the Lebesgue functions and the Nevai formula for the $sinc$-approximations of continuous functions on an interval

    Sibirsk. Mat. Zh., 48:5 (2007),  1155–1166
  26. On the absence of stability of interpolation in eigenfunctions of the Sturm–Liouville problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 9,  60–73


© Steklov Math. Inst. of RAS, 2026