|
|
Publications in Math-Net.Ru
-
On one method for solving a mixed boundary value problem for a parabolic type equation using operators $\mathbb{AT}_{\lambda,j}$
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 2, 59–80
-
A method for solution of a mixed boundary value problem for a hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$
Izv. RAN. Ser. Mat., 87:6 (2023), 121–149
-
On the best polynomials approximation of segment functions
Vladikavkaz. Mat. Zh., 25:1 (2023), 105–111
-
On a method for solving a mixed boundary value problem for a parabolic equation using modified sinc-approximation operators
Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023), 1156–1176
-
On the convergence of generalizations of the sinc approximations on the Privalov–Chanturia class
Sib. Zh. Ind. Mat., 24:3 (2021), 122–137
-
On the uniform approximation of functions of bounded variation by Lagrange interpolation
polynomials with a matrix ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ of Jacobi nodes
Izv. RAN. Ser. Mat., 84:6 (2020), 197–222
-
The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange–Sturm–Liouville
Izv. Saratov Univ. Math. Mech. Inform., 20:1 (2020), 51–63
-
A criterion of convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of variation
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 8, 61–74
-
Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class
Ufimsk. Mat. Zh., 10:2 (2018), 93–108
-
Convergence of the Lagrange–Sturm–Liouville processes for continuous functions of bounded variation
Vladikavkaz. Mat. Zh., 20:4 (2018), 76–91
-
Sufficient condition for convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of continuity
Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018), 1780–1793
-
Necessary and sufficient conditions for the uniform on a segment sinc-approximations functions of bounded variation
Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 288–298
-
Approximation of continuous on a segment functions with the help of linear combinations of sincs
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 3, 72–81
-
On necessary and sufficient conditions for convergence of sinc-approximations
Algebra i Analiz, 27:5 (2015), 170–194
-
On some properties of sinc approximations of continuous functions on the interval
Ufimsk. Mat. Zh., 7:4 (2015), 116–132
-
On inverse nodal problem for Sturm-Liouville operator
Ufimsk. Mat. Zh., 5:4 (2013), 116–129
-
On operators of interpolation with respect to solutions of a Cauchy problem and Lagrange–Jacobi polynomials
Izv. RAN. Ser. Mat., 75:6 (2011), 129–162
-
Differential properties of zeros of eigenfunctions of the Sturm–Liouville problem
Ufimsk. Mat. Zh., 3:4 (2011), 133–143
-
On divergence of sinc-approximations everywhere on $(0,\pi)$
Algebra i Analiz, 22:4 (2010), 232–256
-
The divergence of Lagrange interpolation processes in eigenfunctions of the Sturm–Liouville problem
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 11, 74–85
-
Asymptotic behavior of the solutions and nodal points of Sturm–Liouville differential expressions
Sibirsk. Mat. Zh., 51:3 (2010), 662–675
-
A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval
Mat. Sb., 200:11 (2009), 61–108
-
A criterion for the uniform convergence of sinc-approximations on a segment
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 6, 66–78
-
Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval
Mat. Sb., 198:10 (2007), 141–158
-
Estimates for the Lebesgue functions and the Nevai formula for the $sinc$-approximations of continuous functions on an interval
Sibirsk. Mat. Zh., 48:5 (2007), 1155–1166
-
On the absence of stability of interpolation in eigenfunctions of the Sturm–Liouville problem
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 9, 60–73
© , 2026