RUS  ENG
Full version
PEOPLE

Subbotina Nina Nikolaevna

Publications in Math-Net.Ru

  1. Generalized Hopf formula for the value function in the positional differential game “Boy and Crocodile”

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  229–240
  2. On a control reconstruction problem with nonconvex constraints

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  188–202
  3. Weak* Approximations to the Solution of a Dynamic Reconstruction Problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021),  208–220
  4. Weak* Solution to a Dynamic Reconstruction Problem

    Trudy Mat. Inst. Steklova, 315 (2021),  247–260
  5. On control reconstructions to management problems

    Contributions to Game Theory and Management, 13 (2020),  402–414
  6. Construction of the viability set in a problem of chemotherapy of a malignant tumor growing according to the Gompertz law

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:1 (2020),  173–181
  7. On Applications of the Hamilton–Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors

    Trudy Mat. Inst. Steklova, 304 (2019),  273–284
  8. Optimal result in a control problem with piecewise monotone dynamics

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  265–280
  9. The method of characteristics in an identification problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  255–266
  10. The construction of a continuous generalized solution for the Hamilton–Jacobi equations with state constraints

    Izv. IMI UdGU, 2015, no. 2(46),  193–201
  11. On the continuous extension of a generalized solution of the Hamilton-Jacobi equation by characteristics that form a central field of extremals

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015),  220–235
  12. On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method

    Trudy Mat. Inst. Steklova, 291 (2015),  266–275
  13. Construction of a continuous minimax/viscosity solution of the Hamilton–Jacobi–Bellman equation with nonextendable characteristics

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  247–257
  14. A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:3 (2014),  218–233
  15. On constructions of the generalized solution of the Hamilton–Jacobi equation in bounded domains

    Izv. IMI UdGU, 2012, no. 1(39),  126–127
  16. Construction of a generalized solution to an equation that preserves the Bellman type in a given domain of the state space

    Trudy Mat. Inst. Steklova, 277 (2012),  243–256
  17. Method of characteristics for optimal control problems and conservation laws

    CMFD, 42 (2011),  204–210
  18. On a solution to the Cauchy problem for the Hamilton–Jacobi equation with state constraints

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  191–208
  19. The Method of Characteristics in Macroeconomic Modeling

    Contributions to Game Theory and Management, 3 (2010),  399–408
  20. Classical characteristics of the Bellman equation in constructions of grid optimal synthesis

    Trudy Mat. Inst. Steklova, 271 (2010),  259–277
  21. Estimating error of the optimal grid design in the problems of nonlinear optimal control of prescribed duration

    Avtomat. i Telemekh., 2009, no. 9,  141–156
  22. On the structure of locally Lipschitz minimax solutions of the Hamilton–Jacobi–Bellman equation in terms of classical characteristics

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009),  202–218
  23. Optimal Synthesis in a Control Problem with Lipschitz Input Data

    Trudy Mat. Inst. Steklova, 262 (2008),  240–252
  24. On the structure of the solution of the Hamilton-Jacobi equation with piecewise linear input data

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  144–147
  25. Defining the asymptotics for one class of singularly perturbed problems of vibrational mechanics

    Avtomat. i Telemekh., 2007, no. 11,  150–163
  26. The method of generalized characteristics in an optimal control problem with Lipschitz inputs

    Izv. IMI UdGU, 2006, no. 3(37),  141–142
  27. A numerical method for the minimax solution of the Bellman equation in the Cauchy problem with additional restrictions

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:1 (2006),  208–215
  28. Adjoint variables to optimal control problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 10:2 (2004),  131–141
  29. Singular approximations of minimax and viscosity solutions to Hamilton–Jacobi equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 6:1 (2000),  190–208
  30. Piecewise-smooth solutions of first-order partial differential equations

    Dokl. Akad. Nauk, 333:6 (1993),  705–707
  31. Unified optimality conditions in control problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 1 (1992),  147–159
  32. The method of Cauchy characteristics and generalized solutions of the Hamilton–Jacobi–Bellman equation

    Dokl. Akad. Nauk SSSR, 320:3 (1991),  556–561
  33. Universal optimal strategies in positional differential games

    Differ. Uravn., 19:11 (1983),  1890–1896
  34. The optimum result function in a control problem

    Dokl. Akad. Nauk SSSR, 266:2 (1982),  294–299
  35. Necessary and sufficient conditions for a piecewise smooth value of a differential game

    Dokl. Akad. Nauk SSSR, 243:4 (1978),  862–865

  36. Ivan Ivanovich Eremin

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  5–12
  37. Actual problems of stability and control theory (APSCT'2009)

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  3–7


© Steklov Math. Inst. of RAS, 2026