RUS  ENG
Full version
PEOPLE

Astrakhantsev Gennady Petrovich

Publications in Math-Net.Ru

  1. Assimilative capacity estimate generation using models of great lakes’ ecosystems

    UBS, 55 (2015),  17–34
  2. On the choice of almost-optimal parameters in algorithms of Arrow–Hurwicz type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 1,  12–19
  3. Analysis of algorithms of the Arrow–Hurwicz type

    Zh. Vychisl. Mat. Mat. Fiz., 41:1 (2001),  17–28
  4. Domain decomposition method for the problem of bending heterogeneous plate

    Zh. Vychisl. Mat. Mat. Fiz., 38:10 (1998),  1758–1766
  5. The decomposition method for solving elliptic problems in a three-dimensional domain

    Zh. Vychisl. Mat. Mat. Fiz., 36:10 (1996),  87–96
  6. On a mixed finite-element method in problems of shell theory

    Zh. Vychisl. Mat. Mat. Fiz., 29:10 (1989),  1492–1504
  7. Numerical modeling of the year circulation of deap lakes

    Dokl. Akad. Nauk SSSR, 296:6 (1987),  1331–1334
  8. Numerical solution of mixed boundary value problems for second-order elliptic equations in an arbitrary domain

    Zh. Vychisl. Mat. Mat. Fiz., 25:2 (1985),  200–209
  9. The method of relaxation on a sequence of meshes for elliptic equations with natural boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 21:4 (1981),  926–944
  10. The method of fictitious domains for a second order elliptic equation with natural boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 18:1 (1978),  118–125
  11. Methods for the approximate solution of the Dirichlet problem for the biharmonic equation

    Zh. Vychisl. Mat. Mat. Fiz., 17:4 (1977),  980–998
  12. Iterative correction of eigenvalues

    Zh. Vychisl. Mat. Mat. Fiz., 16:1 (1976),  131–139
  13. The rate of convergence of the block SOR method of solution of variational-difference schemes for elliptic equations of order $2m$ in arbitrary two-dimensional domain

    Zh. Vychisl. Mat. Mat. Fiz., 13:6 (1973),  1425–1440
  14. Convergence of the SOR method of solution of variational-difference equations for elliptic equations in an arbitrary domain

    Zh. Vychisl. Mat. Mat. Fiz., 13:2 (1973),  483–488
  15. Selection of relaxation parameter

    Mat. Zametki, 11:5 (1972),  555–558
  16. A finite difference method for solving the third boundary value problem for elliptic and parabolic equations in an arbitrary region. Iterative solution of finite difference equations. II

    Zh. Vychisl. Mat. Mat. Fiz., 11:3 (1971),  677–687
  17. A certain iterative method of solution of network elliptic problems

    Zh. Vychisl. Mat. Mat. Fiz., 11:2 (1971),  439–448
  18. A finite difference method for solving the third boundary value problem for elliptic and parabolic equations in an arbitrary region. Iterative solution of finite difference equations. I

    Zh. Vychisl. Mat. Mat. Fiz., 11:1 (1971),  105–120
  19. Sharply directed propagation of Love-type surface waves

    Zap. Nauchn. Sem. LOMI, 9 (1968),  5–14

  20. In memory of Leonard Amayakovich Oganesyan (1925–2013)

    Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014),  892–896


© Steklov Math. Inst. of RAS, 2026