RUS  ENG
Full version
PEOPLE

Bogdanov Rifkat Ibragimovich

Publications in Math-Net.Ru

  1. The weakly dissipative version of the Kolmogorov–Arnold–Moser theory and practical calculations

    Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008),  473–490
  2. Nonlocal integrals and conservation laws in the theory of nonlinear solitons

    CMFD, 15 (2006),  59–75
  3. Multiplicative Theory of Orbital Equivalence of Vector Fields in the Plane

    Trudy Mat. Inst. Steklova, 221 (1998),  101–126
  4. Factorization of Diffeomorphisms over Phase Portraits of Vector Fields on the Plane

    Funktsional. Anal. i Prilozhen., 31:2 (1997),  67–70
  5. Algebras of first integrals of finitely modal singularities of vector fields

    Funktsional. Anal. i Prilozhen., 20:2 (1986),  56–57
  6. Invariants of elementary singular points in a plane

    Uspekhi Mat. Nauk, 40:3(243) (1985),  199–200
  7. Topology of the constant-energy manifolds of the isosceles three-body problem

    Dokl. Akad. Nauk SSSR, 265:2 (1982),  265–268
  8. Finitely defined local phase portraits of vector fields

    Funktsional. Anal. i Prilozhen., 16:4 (1982),  59–60
  9. Versal deformations of singular points of vector fields on a plane

    Funktsional. Anal. i Prilozhen., 13:1 (1979),  63–64
  10. Degree of degeneracy of a singular point of a vector field on the plane

    Funktsional. Anal. i Prilozhen., 12:3 (1978),  70–71
  11. Singularities of vector fields on a plane

    Funktsional. Anal. i Prilozhen., 11:4 (1977),  72–73
  12. Modules of $C^\infty$-orbital normal forms for singular points of vector fields on a plane

    Funktsional. Anal. i Prilozhen., 11:1 (1977),  57–58
  13. Orbital equivalence of singular points of vector fields on the plane

    Funktsional. Anal. i Prilozhen., 10:4 (1976),  81–82
  14. Reduction to orbital normal form of a vector field on the plane

    Funktsional. Anal. i Prilozhen., 10:1 (1976),  73–74
  15. Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues

    Funktsional. Anal. i Prilozhen., 9:2 (1975),  63


© Steklov Math. Inst. of RAS, 2026