RUS  ENG
Full version
PEOPLE

Chuburin Yurii Pavlovich

Publications in Math-Net.Ru

  1. Majorana states in the non-Hermitian infinite Bogolyubov–de Gennes model with non-reciprocal transitions

    Izv. IMI UdGU, 66 (2025),  103–114
  2. Study of Majorana bound states in the Kitaev model with imaginary potentials

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:1 (2025),  129–136
  3. Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:2 (2024),  286–298
  4. Eigenvalues and eigenfunctions of the perturbed non-Hermitian SSH Hamiltonian with PT symmetry

    Izv. IMI UdGU, 62 (2023),  87–95
  5. Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator

    TMF, 212:3 (2022),  414–428
  6. Interaction between subbands in a quasi-one-dimensional superconductor

    TMF, 210:3 (2022),  455–469
  7. Behaviour of Andreev states for topological phase transition

    TMF, 208:1 (2021),  145–162
  8. Mutual transition of Andreev and Majorana bound states in a superconducting gap

    TMF, 205:3 (2020),  484–501
  9. The role of Majorana-like bound states in the Andreev reflection and the Josephson effect in the case of a topological insulator

    TMF, 202:1 (2020),  81–97
  10. Investigation of eigenvalues and scattering problem for the Bogoliubov–de Gennes Hamiltonian near the superconducting gap edge

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020),  259–269
  11. Andreev reflection in the $p$-wave superconductor–normal metal contact

    Izv. IMI UdGU, 54 (2019),  55–62
  12. Majorana states near an impurity in the Kitayev infinite and semi-infinite model

    TMF, 200:1 (2019),  137–146
  13. Existence of Majorana bounded states in a simple Josephson transition model

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:3 (2019),  351–362
  14. Existence of Majorana bound states in a superconducting nanowire near an impurity

    TMF, 197:2 (2018),  279–289
  15. Two-particle scattering in a periodic medium

    TMF, 191:2 (2017),  304–318
  16. Quasi-levels of the Hamiltonian for a carbon nanotube

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 4,  76–83
  17. “Layerwise” scattering for a difference Schrödinger operator

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1,  58–65
  18. Electron scattering by a crystal layer

    TMF, 176:3 (2013),  444–457
  19. The discrete Schrödinger equation for a quantum waveguide

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4,  80–93
  20. Lifetime of resonance states of the continuous electronic spectrum of a quantum-well Cu(001) film

    Fizika Tverdogo Tela, 53:7 (2011),  1423–1427
  21. Electron scattering at the domain wall

    TMF, 166:2 (2011),  272–281
  22. A discrete Schrödinger operator on a graph

    TMF, 165:1 (2010),  119–133
  23. Quasilevels of a two-particle Schrödinger operator with a perturbed periodic potential

    TMF, 158:1 (2009),  115–125
  24. Quasi-levels of the discrete Schrödinger equation with a decreasing potential on a graph

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 3,  104–113
  25. On quasi-levels of the discret two-particle Schrödinger operator with a decreasing small potential

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 1,  35–46
  26. Decay law for a quasistationary state of the Schrödinger operator for a crystal film

    TMF, 151:2 (2007),  248–260
  27. Two-dimensional magnetic Schrodinger operator with a periodic exterior field

    Izv. IMI UdGU, 2006, no. 1(35),  77–82
  28. The levels of the two-particle Schrödinger operator corresponding to a crystal film

    TMF, 147:2 (2006),  229–239
  29. Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film

    TMF, 143:3 (2005),  417–430
  30. On levels of the one-dimensional discrete Schrödinger operator with a decreasing small potential

    Izv. IMI UdGU, 2004, no. 1(29),  85–94
  31. Schrödinger Operator Levels for a Crystal Film with a Nonlocal Potential

    TMF, 140:2 (2004),  297–302
  32. The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field

    TMF, 134:2 (2003),  243–253
  33. Schrödinger operator eigenvalue (resonance) on a zone boundary

    TMF, 126:2 (2001),  196–205
  34. Schrödinger operator with a perturbed small steplike potential

    TMF, 120:2 (1999),  277–290
  35. Resonance multiplicity of a perturbed periodic Schrödinger operator

    TMF, 116:1 (1998),  134–145
  36. On approximation of the “Membrane” Schrödinger operator by the “Crystal” operator

    Mat. Zametki, 62:5 (1997),  773–781
  37. On small perturbations of the Schrödinger equation with periodic potential

    TMF, 110:3 (1997),  443–453
  38. On Schrodinger equation for the plane film with the limit periodic lattice

    TMF, 106:1 (1996),  133–144
  39. Multidimensional discrete Schrödinger equation with limit periodic potential

    TMF, 102:1 (1995),  74–82
  40. Solutions of the Schrödinger equation in the case of a semiinfinite crystal

    TMF, 98:1 (1994),  38–47
  41. On the Schrödinger operator with a small potential in the case of a crystal film

    Mat. Zametki, 52:2 (1992),  138–143
  42. Floquet asymptotics of solutions of the Schrödinger equation in the case of a semi-infinite crystal

    TMF, 77:3 (1988),  472–478
  43. Scattering for the Schrödinger operator in the case of a crystal film

    TMF, 72:1 (1987),  120–131
  44. Vector-valued distributions and functions of operators

    Dokl. Akad. Nauk SSSR, 231:6 (1976),  1304–1307
  45. On the uniqueness of analytic continuation with respect to a parameter and the vanishing of cohomology with values in the sheaf of germs of holomorphic functions

    Dokl. Akad. Nauk SSSR, 231:3 (1976),  551–554
  46. On upper and lower values of a generalized function at a point

    Mat. Zametki, 14:3 (1973),  339–348


© Steklov Math. Inst. of RAS, 2026