RUS  ENG
Full version
PEOPLE

Pavlov Yurii Leonidovich

Publications in Math-Net.Ru

  1. A note on the size of the trees in the Galton-Watson forest

    Diskr. Mat., 37:4 (2025),  102–117
  2. On the sizes of trees in a Galton – Watson forest in the intermediate case

    Diskr. Mat., 37:1 (2025),  39–51
  3. XI International Petrozavodsk Conference «Probabilistic Methods in Discrete Mathematics» dedicated to the 90th anniversary of V. F. Kolchin

    Diskr. Mat., 36:3 (2024),  150–151
  4. On the sizes of trees in a Galton–Watson forest with infinite variance in the critical case

    Diskr. Mat., 36:2 (2024),  33–49
  5. Local treelike structure in the power-law configuration graphs

    Inform. Primen., 18:1 (2024),  46–53
  6. On the limit distribution of the number of vertices in the levels of a Galton–Watson tree

    Mat. Zametki, 116:3 (2024),  430–437
  7. On the maximal Galton-Watson forest tree with infinite variance of the offspring

    Diskr. Mat., 35:2 (2023),  78–92
  8. On the maximal size of tree in a random forest

    Diskr. Mat., 34:4 (2022),  69–83
  9. Sizes of Trees in a Random Forest and Configuration Graphs

    Trudy Mat. Inst. Steklova, 316 (2022),  298–315
  10. Connectivity of configuration graphs in complex network models

    Inform. Primen., 15:1 (2021),  18–22
  11. The maximum tree of a random forest in the configuration graph

    Mat. Sb., 212:9 (2021),  146–163
  12. Limit distributions of the number of vertices of a given degree in a configuration graph with bounded number of edges

    Teor. Veroyatnost. i Primenen., 66:3 (2021),  468–486
  13. On the connectivity of configuration graphs

    Diskr. Mat., 31:2 (2019),  114–122
  14. On the asymptotics of clustering coefficient in a configuration graph with unknown distribution of vertex degrees

    Inform. Primen., 13:3 (2019),  9–13
  15. On the asymptotics of degree structure of configuration graphs with bounded number of edges

    Diskr. Mat., 30:1 (2018),  77–94
  16. On the robustness of configuration graphs in a random environment

    Inform. Primen., 12:2 (2018),  2–10
  17. Conditional configuration graphs with discrete power-law distribution of vertex degrees

    Mat. Sb., 209:2 (2018),  120–137
  18. On limit behavior of maximum vertex degree in a conditional configuration graph near critical points

    Diskr. Mat., 28:2 (2016),  58–70
  19. On the limit distributions of the degrees of vertices in configuration graphs with a bounded number of edges

    Mat. Sb., 207:3 (2016),  93–110
  20. On the maximum size of a tree in the Galton–Watson forest with a bounded number of vertices

    Diskr. Mat., 26:3 (2014),  90–100
  21. A biological problem and generalized allocation scheme

    Diskr. Mat., 25:4 (2013),  88–102
  22. Limit distributions of the number of loops in a random configuration graph

    Trudy Mat. Inst. Steklova, 282 (2013),  212–230
  23. Limit distributions of the number of vertices of given degree in the forest of a random mapping with a given number of cycles

    Diskr. Mat., 24:1 (2012),  132–139
  24. On the maximum size of a tree in a random unlabelled unrooted forest

    Diskr. Mat., 23:1 (2011),  3–20
  25. On conditional Internet graphs whose vertex degrees have no mathematical expectation

    Diskr. Mat., 22:3 (2010),  20–33
  26. On the limit distributions of the vertex degrees of conditional Internet graphs

    Diskr. Mat., 21:3 (2009),  14–23
  27. Random graphs of Internet type and the generalised allocation scheme

    Diskr. Mat., 20:3 (2008),  3–18
  28. The limit distribution of the size of a giant component in an Internet-type random graph

    Diskr. Mat., 19:3 (2007),  22–34
  29. Limit theorems on sizes of trees in a random unlabelled forest

    Diskr. Mat., 17:2 (2005),  70–86
  30. Limit theorems for the sizes of trees of an unlabeled graph of a random mapping

    Diskr. Mat., 16:3 (2004),  63–75
  31. Limit distribution for the number of pairs in a generalized scheme of arrays

    Diskr. Mat., 14:3 (2002),  149–159
  32. Limit distributions of the maximum size of a tree in a random recursive forest

    Diskr. Mat., 14:1 (2002),  60–74
  33. A remark on Galton–Watson forests

    Diskr. Mat., 12:1 (2000),  47–59
  34. Limit distributions of the number of vertices in strata of a simply generated forest

    Diskr. Mat., 11:1 (1999),  97–112
  35. Limit distribution of the number of trees of given size in a random forest

    Diskr. Mat., 8:2 (1996),  31–47
  36. Limit distributions for the maximum size of a tree in a random forest

    Diskr. Mat., 7:3 (1995),  19–32
  37. К вопросу о связи ветвящихся процессов и случайных деревьев

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1995, no. 2,  31–43
  38. Limit distributions of the height of a random forest consisting of plane rooted trees

    Diskr. Mat., 6:1 (1994),  137–154
  39. О случайных деревьях

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1993, no. 1,  47–53
  40. Some properties of plane trees with a hanging root

    Diskr. Mat., 4:2 (1992),  61–65
  41. Distribution of Nodes in Layers of Random Forest

    Teor. Veroyatnost. i Primenen., 33:1 (1988),  105–114
  42. Random mappings with constraints on the number of cycles

    Trudy Mat. Inst. Steklov., 177 (1986),  122–132
  43. Limit distributions of the height of a random forest

    Teor. Veroyatnost. i Primenen., 28:3 (1983),  449–457
  44. Limit distributions of a characteristic of a random mapping

    Teor. Veroyatnost. i Primenen., 26:4 (1981),  841–847
  45. A case of limit distribution of the maximal volume on a tree in a random forest

    Mat. Zametki, 25:5 (1979),  751–760
  46. Limit theorems for the number of trees of a given size in a random forest

    Mat. Sb. (N.S.), 103(145):3(7) (1977),  392–403
  47. The asymptotic distribution of maximum tree size in a random forest

    Teor. Veroyatnost. i Primenen., 22:3 (1977),  523–533

  48. Zubkov Andrey Mikhailovich (30.12.1946–06.08.2025)

    Diskr. Mat., 37:3 (2025),  3–5
  49. Валентин Федорович Колчин (1934–2016)

    Diskr. Mat., 28:4 (2016),  3–5


© Steklov Math. Inst. of RAS, 2026