RUS  ENG
Full version
PEOPLE

Fedorov Alexandre Vladimirovich

Publications in Math-Net.Ru

  1. Effect of inert microand nanoparticles on the parameters of detonation waves in silane/hydrogen-air mixtures

    Fizika Goreniya i Vzryva, 55:2 (2019),  119–126
  2. Problems of closing models that describe detonation of gas suspensions of ultrafine aluminum particles (review)

    Fizika Goreniya i Vzryva, 55:1 (2019),  3–20
  3. About qualitative properties of the collisional model for description of shock-wave dynamics of gas particle suspensions

    Mat. Model., 31:3 (2019),  3–22
  4. Physicomathematical modeling of ignition of a heterogeneous mixture of methane, hydrogen, and coal microparticles

    Fizika Goreniya i Vzryva, 54:6 (2018),  41–49
  5. Effect of the wave structure of the flow in a supersonic combustor on ignition and flame stabilization

    Fizika Goreniya i Vzryva, 54:6 (2018),  3–16
  6. Ignition delay time for silane/hydrogen/air mixtures at low temperatures

    Fizika Goreniya i Vzryva, 54:4 (2018),  30–37
  7. On the theory of ignition, combustion, and detonation of microand nanoparticles

    Fizika Goreniya i Vzryva, 54:3 (2018),  104–108
  8. Attenuation and suppression of detonation waves in reacting gas mixtures by clouds of inert microand nanoparticles

    Fizika Goreniya i Vzryva, 54:2 (2018),  82–88
  9. Modeling of plane detonation waves in a gas suspension of nano-sized aluminum particles

    Fizika Goreniya i Vzryva, 54:2 (2018),  71–81
  10. Exit of a heterogeneous detonation wave into a channel with linear expansion. II. Critical propagation condition

    Fizika Goreniya i Vzryva, 54:1 (2018),  81–91
  11. Computation of traveling waves in a heterogeneous medium with two pressures and a gas equation of state depending on phase concentrations

    Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018),  806–820
  12. Numerical study of dispersion of a rough dense layer of particles under the action of an expanding shock wave

    Fizika Goreniya i Vzryva, 53:6 (2017),  87–96
  13. Outgoing of a heterogeneous detonation wave into a channel with linear expansion. I. Propagation modes

    Fizika Goreniya i Vzryva, 53:5 (2017),  104–114
  14. Role of particle collisions in shock wave interaction with a dense spherical layer of a gas suspension

    Fizika Goreniya i Vzryva, 53:4 (2017),  84–93
  15. Mathematical modeling of propagation of explosion waves and their effect on various objects

    Fizika Goreniya i Vzryva, 53:4 (2017),  72–83
  16. Effects of temperature and moisture on the ignition behavior of silane release into air

    Fizika Goreniya i Vzryva, 53:3 (2017),  33–41
  17. Exhaustion of a silane jet into a space

    Fizika Goreniya i Vzryva, 53:2 (2017),  31–38
  18. Ignition of a two-fuel hydrogen–silane mixture in air

    Fizika Goreniya i Vzryva, 53:1 (2017),  3–10
  19. The shock waves structure in the gas-particles mixture with chaotic pressure

    Mat. Model., 29:6 (2017),  3–20
  20. Description of melting of nano-sized aluminum samples

    Fizika Goreniya i Vzryva, 52:4 (2016),  94–100
  21. Molecular dynamics and phenomenological simulations of an aluminum nanoparticle

    Fizika Goreniya i Vzryva, 52:3 (2016),  45–50
  22. Effect of collision dynamics of particles on the processes of shock wave dispersion

    Fizika Goreniya i Vzryva, 52:2 (2016),  93–105
  23. Axisymmetric expanding heterogeneous detonation in gas suspensions of aluminum particles

    Fizika Goreniya i Vzryva, 52:1 (2016),  84–95
  24. Calculation of flammability limits of silane–oxygen and silane–air mixtures

    Fizika Goreniya i Vzryva, 52:1 (2016),  46–51
  25. Modeling the dynamics of several particles behind a propagating shock wave

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:24 (2016),  17–23
  26. Shock wave structure in a heterogeneous medium with two pressures

    Fizika Goreniya i Vzryva, 51:6 (2015),  62–71
  27. Semi-empirical model of the combustion wave in a gas suspension of magnesium particles

    Fizika Goreniya i Vzryva, 51:5 (2015),  57–65
  28. Application of detailed and reduced kinetic schemes for the description of detonation of diluted hydrogen–air mixtures

    Fizika Goreniya i Vzryva, 51:5 (2015),  22–33
  29. Physicomathematical modeling of ignition and combustion of silane in transient and reflected shock waves

    Fizika Goreniya i Vzryva, 51:4 (2015),  37–45
  30. Molecular dynamics modeling melting of of aluminum nanoparticles of the embedded atom method

    Fizika Goreniya i Vzryva, 51:3 (2015),  55–59
  31. Research in mechanics of reacting homogeneous and heterogeneous media at the Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

    Fizika Goreniya i Vzryva, 51:2 (2015),  92–101
  32. Computation of wave interference and relaxation of particles after passing of a shock wave

    Prikl. Mekh. Tekh. Fiz., 56:5 (2015),  18–29
  33. Ignition delay time in a methane–air mixture in the presence of iron particles

    Fizika Goreniya i Vzryva, 50:6 (2014),  11–20
  34. Modeling of propagation of shock and detonation waves in dusty media with allowance for particle collisions

    Fizika Goreniya i Vzryva, 50:5 (2014),  53–62
  35. Physicomathematical modeling of detonation suppression by inert particles in methane–oxygen and methane–hydrogen–oxygen mixtures

    Fizika Goreniya i Vzryva, 50:5 (2014),  48–52
  36. Description of dynamic processes in two-phase colliding media with the use of molecular-kinetic approaches

    Fizika Goreniya i Vzryva, 50:2 (2014),  81–93
  37. Interaction of a heterogeneous detonation wave propagating in a cellular regime with a cloud of inert particles

    Fizika Goreniya i Vzryva, 50:2 (2014),  68–76
  38. Simple kinetics and detonation wave structure in a methane–air mixture

    Fizika Goreniya i Vzryva, 50:1 (2014),  97–106
  39. Mathematical modeling of moisture extraction from rice grains

    Prikl. Mekh. Tekh. Fiz., 55:6 (2014),  127–131
  40. Shock Wave Structure in a Mixture of Condensed Media with Different Pressures

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014),  104–120
  41. Complex modeling of melting of an aluminum nanoparticle

    Fizika Goreniya i Vzryva, 49:4 (2013),  68–75
  42. Calculation of detonation wave propagation in a gas suspension of aluminum and inert particles

    Fizika Goreniya i Vzryva, 49:3 (2013),  88–101
  43. Modeling of detonation wave propagation through a cloud of particles in a two-velocity two-temperature formulation

    Fizika Goreniya i Vzryva, 49:2 (2013),  61–70
  44. Semi-empirical model for estimating ignition parameters of iron particles

    Fizika Goreniya i Vzryva, 49:1 (2013),  74–79
  45. Modeling of Pulsating Flow in Blood Capillaries

    Mat. Biolog. Bioinform., 8:1 (2013),  1–11
  46. Mathematical modeling of jet interaction with a high-enthalpy flow in an expanding channel

    Prikl. Mekh. Tekh. Fiz., 54:2 (2013),  32–45
  47. Experimental and mathematical simulation of auto-ignition of iron micro particles

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:2 (2013),  21–30
  48. Diffraction of Wave Processes in Gas-Particles Mix

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:1 (2013),  85–97
  49. Numerical analysis of the flow around a system of bodies behind the shock wave

    Fizika Goreniya i Vzryva, 48:4 (2012),  83–92
  50. Determination of chemical reaction zone parameters, Neumann peak parameters, and the state in the Chapman–Jouguet plane in homogeneous and heterogeneous high explosives

    Fizika Goreniya i Vzryva, 48:3 (2012),  62–68
  51. Ignition and combustion of disperse and nanodisperse gas suspensions under dynamic conditions

    Fizika Goreniya i Vzryva, 48:3 (2012),  53–61
  52. Characteristics and criteria of ignition of suspensions of aluminum particles in detonation processes

    Fizika Goreniya i Vzryva, 48:2 (2012),  76–88
  53. Mathematical model of detonation combustion of kerosene vapor in an oxidizer

    Fizika Goreniya i Vzryva, 48:1 (2012),  47–54
  54. Calculation of expansion of a packed bed of a disperse material subjected to pulsed fluidization

    Prikl. Mekh. Tekh. Fiz., 53:3 (2012),  105–116
  55. Ignition of an iron bed in a rapid compression machine

    Fizika Goreniya i Vzryva, 47:6 (2011),  98–100
  56. Specific features of cellular detonation in polydisperse suspensions of aluminum particles in a gas

    Fizika Goreniya i Vzryva, 47:5 (2011),  85–94
  57. Determination of the critical size of a particle cloud necessary for suppression of gas detonation

    Fizika Goreniya i Vzryva, 47:4 (2011),  100–108
  58. Point model of combustion of aluminum nanoparticles in the reflected shock wave

    Fizika Goreniya i Vzryva, 47:3 (2011),  47–51
  59. Mathematical modeling of melting of nano-sized metal particles

    Fizika Goreniya i Vzryva, 47:2 (2011),  23–29
  60. Propagation of detonation waves in gas suspensions in channels with a backward-facing step

    Fizika Goreniya i Vzryva, 47:1 (2011),  80–91
  61. Modeling of blood microcirculation processes with allowance for pulse pressure oscillations

    Prikl. Mekh. Tekh. Fiz., 52:2 (2011),  92–102
  62. Physical and mathematical modeling of a supersonic flow around a cylinder with a porous insert

    Prikl. Mekh. Tekh. Fiz., 52:1 (2011),  13–23
  63. Numerical simulation of shock wave propagation n a mixture of a gas and solid particles

    Fizika Goreniya i Vzryva, 46:5 (2010),  97–107
  64. Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles

    Fizika Goreniya i Vzryva, 46:3 (2010),  103–115
  65. Motion of a particle behind the shock wave front

    Fizika Goreniya i Vzryva, 46:2 (2010),  101–110
  66. Interaction of a normally incident shock wave with a porous material layer on a solid wall

    Fizika Goreniya i Vzryva, 46:1 (2010),  102–108
  67. Development of the Richtmyer–Meshkov instability during interaction of the diffusion mixing layer of two gases with transient and reflected shock waves

    Prikl. Mekh. Tekh. Fiz., 51:3 (2010),  14–23
  68. Transmission of detonation wave throgh cloud of particles

    Vestnik Chelyabinsk. Gos. Univ., 2010, no. 12,  110–120
  69. Modeling of combustion of a magnesium particle (Stefan problem)

    Fizika Goreniya i Vzryva, 45:6 (2009),  20–25
  70. Diffraction of a plane detonation wave on a back-facing step in a gas suspension

    Fizika Goreniya i Vzryva, 45:5 (2009),  95–107
  71. Mathematical modeling of heterogeneous detonation in gas suspensions of aluminum and coal-dust particles

    Fizika Goreniya i Vzryva, 45:4 (2009),  166–177
  72. Ignition and combustion of magnesium particles in a nonuniform thermal field

    Fizika Goreniya i Vzryva, 45:2 (2009),  48–57
  73. Description of the anomalous Rayleigh–Taylor instability on the basis of the model of dynamics of a three-velocity three-temperature mixture

    Prikl. Mekh. Tekh. Fiz., 50:1 (2009),  58–67
  74. Physicomathematical modeling of the processes of capillary impregnation of porous materials

    Prikl. Mekh. Tekh. Fiz., 50:1 (2009),  42–51
  75. heterogeneous mechanics method to describe heterogeneous detonation and acoustical-convective drying

    Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11,  122–152
  76. Mathematical model of magnesium ignition in an extended range of parameters

    Fizika Goreniya i Vzryva, 44:5 (2008),  64–71
  77. Formation and degeneration of cellular detonation in bidisperse gas suspensions of aluminum particles

    Fizika Goreniya i Vzryva, 44:3 (2008),  109–120
  78. Structure and initiation of plane detonation waves in a bidisperse gas suspension of aluminum particles

    Fizika Goreniya i Vzryva, 44:2 (2008),  46–55
  79. Numerical study of shock-wave diffraction in variable-section channels in gas suspensions

    Fizika Goreniya i Vzryva, 44:1 (2008),  85–95
  80. Application of the TVD scheme for the two-phase flow calculations at different component velocities and pressures

    Mat. Model., 20:1 (2008),  29–47
  81. Interaction of rarefaction waves with a finite-thickness layer near a rigid boundary. Equilibrium approximation

    Fizika Goreniya i Vzryva, 43:5 (2007),  126–135
  82. Reflection of a shock wave in a dusty cloud

    Fizika Goreniya i Vzryva, 43:1 (2007),  121–131
  83. Numerical modeling of magnesium particle ignition in the non-uniform thermal field

    Mat. Model., 19:6 (2007),  109–117
  84. Some features of the flow around rapidly rotating bodies made of cellular-porous materials

    Prikl. Mekh. Tekh. Fiz., 48:1 (2007),  86–96
  85. Shock-wave-initiated lifting of particles from a cavity

    Prikl. Mekh. Tekh. Fiz., 48:1 (2007),  24–34
  86. Theoretical and numerical study of detonation processes in gas suspensions with aluminum particles

    Fizika Goreniya i Vzryva, 42:6 (2006),  126–136
  87. Conjugate mathematical model of ignition of magnesium samples

    Fizika Goreniya i Vzryva, 42:3 (2006),  57–63
  88. Scattering of a compressed stratified concentrated mixture

    Fizika Goreniya i Vzryva, 42:2 (2006),  70–79
  89. Comparative analysis of three mathematical models of hydrogen ignition

    Fizika Goreniya i Vzryva, 42:1 (2006),  26–33
  90. Numerical technologies for investigations of heterogeneous detonations of gas particle suspensions

    Mat. Model., 18:8 (2006),  49–63
  91. Centrifugal convection in rapid rotation of bodies made of cellular-porous materials

    Prikl. Mekh. Tekh. Fiz., 47:1 (2006),  46–57
  92. Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen

    Fizika Goreniya i Vzryva, 41:4 (2005),  84–98
  93. Computation of dust lifting behind a shock wave sliding along the layer. Verification of the model

    Fizika Goreniya i Vzryva, 41:3 (2005),  110–120
  94. Discrete-continual model of flame propagation in a gas suspension of metal particles. II. Allowance for the pre-flame oxidation reaction

    Fizika Goreniya i Vzryva, 41:2 (2005),  94–97
  95. Discrete-continual model of flame propagation in a gas suspension of metal particles. I. One-dimensional approximation

    Fizika Goreniya i Vzryva, 41:2 (2005),  81–93
  96. Mathematical simulation of heterogeneous detonation of coal dust in oxygen with allowance for the ignition stage

    Fizika Goreniya i Vzryva, 41:1 (2005),  89–99
  97. Mathematical modeling of flows inside rotating bodies made of cellular-porous materials

    Prikl. Mekh. Tekh. Fiz., 46:6 (2005),  78–85
  98. Heating of dry samples under an acoustic-convective action

    Prikl. Mekh. Tekh. Fiz., 46:5 (2005),  116–122
  99. Development of the Richtmyer–Meshkov instability upon interaction of a diffusion mixing layer of two gases with shock waves

    Prikl. Mekh. Tekh. Fiz., 46:3 (2005),  3–11
  100. Numerical study of methane pyrolysis in shock waves

    Fizika Goreniya i Vzryva, 40:5 (2004),  91–101
  101. Mathematical simulation of sintering of an ultrafine powder

    Fizika Goreniya i Vzryva, 40:2 (2004),  42–44
  102. Mixing in wave processes propagating in gas mixtures (review)

    Fizika Goreniya i Vzryva, 40:1 (2004),  21–37
  103. Evolution of the diffusion mixing layer of two gases upon interaction with shock waves

    Prikl. Mekh. Tekh. Fiz., 45:3 (2004),  24–31
  104. Ignition of an aluminum particle

    Fizika Goreniya i Vzryva, 39:5 (2003),  65–68
  105. Some phenomena during flame propagation in a half-open channel with an obstacle

    Fizika Goreniya i Vzryva, 39:5 (2003),  28–31
  106. Mathematical simulation of lifting and ignition of particles in coal deposits

    Fizika Goreniya i Vzryva, 39:2 (2003),  67–74
  107. Mathematical simulation of the mechanism of acoustic drying of porous materials

    Prikl. Mekh. Tekh. Fiz., 44:5 (2003),  102–117
  108. Experimental determination of hydraulic conductivity of pine samples in the longitudinal direction during convective drying

    Prikl. Mekh. Tekh. Fiz., 44:3 (2003),  117–123
  109. Cellular and tulip flame configurations

    Prikl. Mekh. Tekh. Fiz., 44:3 (2003),  112–116
  110. Mathematical simulation of detonation processes in a coal-particle suspension

    Fizika Goreniya i Vzryva, 38:6 (2002),  103–112
  111. Mathematical simulation of ignition of a cloud of hydrocarbon microdrops

    Fizika Goreniya i Vzryva, 38:5 (2002),  97–100
  112. Calculation of dust lifting by a transient shock wave

    Fizika Goreniya i Vzryva, 38:3 (2002),  80–84
  113. Interaction of a shock wave with a cloud of aluminum particles in a channel

    Fizika Goreniya i Vzryva, 38:2 (2002),  89–98
  114. Numerical simulation of detonation initiation with a shock wave entering a cloud of aluminum particles

    Fizika Goreniya i Vzryva, 38:1 (2002),  114–122
  115. Mathematical simulation of dust lifting from the surface

    Prikl. Mekh. Tekh. Fiz., 43:6 (2002),  113–125
  116. Special features of the shock-wave structure in mixtures of gases with disparate molecular masses

    Prikl. Mekh. Tekh. Fiz., 43:4 (2002),  47–57
  117. Interaction of shock waves with a combined discontinuity in two-phase media. 2. Nonequilibrium approximation

    Prikl. Mekh. Tekh. Fiz., 43:4 (2002),  36–46
  118. Interaction of shock waves with a combined discontinuity in two-phase media. 1. Equilibrium approximation

    Prikl. Mekh. Tekh. Fiz., 43:3 (2002),  45–58
  119. Ignition of the gas–coal dust mixture. Pointwise approximation

    Fizika Goreniya i Vzryva, 37:6 (2001),  36–45
  120. Ignition wave in a two–velocity gas mixture of magnesium particles

    Fizika Goreniya i Vzryva, 37:2 (2001),  84–93
  121. Èíôîðìàöèÿ î 3-ì Ìåæäóíàðîäíîì ñèìïîçèóìå

    Fizika Goreniya i Vzryva, 37:1 (2001),  141–146
  122. Reflection of a shock wave from a rigid wall in a mixture of a liquid metal and solid particles

    Fizika Goreniya i Vzryva, 36:4 (2000),  97–108
  123. Ignition of a cloud of metal particles in the continuum regime. II. Nonadiabatic flow

    Fizika Goreniya i Vzryva, 35:6 (1999),  91–96
  124. Ignition of a cloud of metal particles in the continuum regime I. Adiabatic flow

    Fizika Goreniya i Vzryva, 35:5 (1999),  31–39
  125. Numerical simulation of shock-wave initiation of heterogeneous detonation in aerosuspensions of aluminum particles

    Fizika Goreniya i Vzryva, 35:3 (1999),  81–88
  126. Reflection of shock waves from a solid boundary in a mixture of condensed materials. 2. Nonequilibrium approximation

    Prikl. Mekh. Tekh. Fiz., 40:6 (1999),  3–10
  127. Reflection of shock waves from a solid boundary in a mixture of condensed materials. 1. Equilibrium approximation

    Prikl. Mekh. Tekh. Fiz., 40:5 (1999),  73–78
  128. Numerical study of flows of reacting composite mixtures

    Prikl. Mekh. Tekh. Fiz., 40:2 (1999),  128–136
  129. Propagation of shock waves in a two-phase mixture with different pressures of the components

    Prikl. Mekh. Tekh. Fiz., 40:1 (1999),  55–63
  130. Numerical study of heat waves in the oxidation of a magnesium wire

    Fizika Goreniya i Vzryva, 34:6 (1998),  29–38
  131. Determination of nonideal self-sustained detonation regimes of aluminum particles in air

    Fizika Goreniya i Vzryva, 34:5 (1998),  95–102
  132. Ignition of gaseous suspensions in an interacting continuum regime

    Fizika Goreniya i Vzryva, 34:4 (1998),  57–64
  133. Mathematical study of thermal explosion of a magnesium particle with allowance for metal evaporation

    Fizika Goreniya i Vzryva, 34:2 (1998),  39–46
  134. The shock-wave structure in a two-velocity mixture of compressible media with different pressures

    Prikl. Mekh. Tekh. Fiz., 39:2 (1998),  10–19
  135. Mathematical modeling of detonation of an aluminum dust in oxygen with allowance for velocity nonequilibrium of the particles

    Fizika Goreniya i Vzryva, 33:6 (1997),  80–91
  136. Mathematical model for the ignition of a mixture of a liquid fuel and solid particles in air

    Fizika Goreniya i Vzryva, 33:3 (1997),  86–94
  137. Interaction of detonation and rarefaction waves in aluminum particles dispersed in oxygen

    Fizika Goreniya i Vzryva, 33:2 (1997),  102–110
  138. Wave propagation in a two-phase mixture of compressible mediums characterized by a difference in pressure and velocity between components

    Dokl. Akad. Nauk, 350:2 (1996),  201–205
  139. Magnesium-particle ignition (distributed model)

    Fizika Goreniya i Vzryva, 32:4 (1996),  3–12
  140. Types and stability of detonation flows of aluminum particles in oxygen

    Fizika Goreniya i Vzryva, 32:2 (1996),  74–85
  141. Numerical and analytical study of magnesium particle ignition

    Fizika Goreniya i Vzryva, 32:1 (1996),  75–84
  142. Types of detonation flows of an aluminum-oxygen aerosuspension

    Dokl. Akad. Nauk, 342:2 (1995),  185–188
  143. Mathematical modeling of behavior of artificial object population in near-earth space

    Fizika Goreniya i Vzryva, 30:5 (1994),  142–149
  144. Mathematical modeling of the motion of an air suspension taking into account nonequilibrium melting (crystallization)

    Fizika Goreniya i Vzryva, 30:4 (1994),  91–99
  145. Stationary shock wave in a two-temperature gas-solid particle mixture with account of melting

    Fizika Goreniya i Vzryva, 30:3 (1994),  100–107
  146. Problem of the interaction between a supersonic flow and a cloud of particles

    Prikl. Mekh. Tekh. Fiz., 35:6 (1994),  26–31
  147. Initiation of the heterogeneous detonation of aluminum particles dispersed in oxygen

    Fizika Goreniya i Vzryva, 28:3 (1992),  83–89
  148. Structure of the heterogeneous detonation of aluminum particles dispersed in oxygen

    Fizika Goreniya i Vzryva, 28:3 (1992),  72–83
  149. Structure of a combination discontinuity in gas suspensions in the presence of random pressure from particles

    Prikl. Mekh. Tekh. Fiz., 33:5 (1992),  36–41
  150. Structure, propagation, and reflection of shock waves in a mixture of solids (the hydrodynamic approximation)

    Prikl. Mekh. Tekh. Fiz., 33:4 (1992),  10–18
  151. Ignition of magnesium particles near the end of a shock tube

    Fizika Goreniya i Vzryva, 27:6 (1991),  139–142
  152. Ignition of a suspension of metal particles with an actual explosion. II. Unidimensional nonsteady-state approximation

    Fizika Goreniya i Vzryva, 27:5 (1991),  22–28
  153. Ignition of a suspension of metal particles with an actual explosion. I. Statement of the problem and solution in a self-modeling approximation

    Fizika Goreniya i Vzryva, 27:5 (1991),  16–21
  154. Normal detonation regimes in relaxing media

    Fizika Goreniya i Vzryva, 25:1 (1989),  119–127
  155. Investigation of the adiabat of heterogeneous two-phase detonation

    Fizika Goreniya i Vzryva, 23:2 (1987),  115–121
  156. A simplified method of calculating the erosion combustion rate for a mixed condensed system

    Fizika Goreniya i Vzryva, 23:2 (1987),  10–17
  157. Calculation of the dispersion of a compressed volume of a gas suspension

    Prikl. Mekh. Tekh. Fiz., 28:5 (1987),  139–144
  158. Shock wave structure in a mixture of gas and melting particles

    Prikl. Mekh. Tekh. Fiz., 27:2 (1986),  133–138
  159. On the theory of differential analyzers of contact discontinuities and shock waves

    Dokl. Akad. Nauk SSSR, 281:1 (1985),  28–32
  160. Acceleration wave in a gas-solid particle mixture with consideration of fusion

    Prikl. Mekh. Tekh. Fiz., 26:6 (1985),  111–113
  161. Description of ignition and combustion of gas mixtures with solid particles by methods of the mechanics of continuous media

    Fizika Goreniya i Vzryva, 20:2 (1984),  3–9
  162. Qualitative study of equations describing quasi-one-dimensional nonequilibrium duct flow

    Prikl. Mekh. Tekh. Fiz., 24:1 (1983),  33–38
  163. Mathematical modeling of metal particle ignition in the high-temperature flow behind a shock

    Fizika Goreniya i Vzryva, 18:3 (1982),  5–9
  164. A differential analyzer for discontinuities of solutions of nonhomogeneous hyperbolic equations

    Dokl. Akad. Nauk SSSR, 254:3 (1980),  554–559

  165. Valentin Fedorovich Kuropatenko (1933–2017)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017),  151–152


© Steklov Math. Inst. of RAS, 2026