RUS  ENG
Full version
PEOPLE

Rodin Vladimir Aleksandrovich

Publications in Math-Net.Ru

  1. Algorithm and program for graphical selection of the Pareto set in a point array

    Applied Mathematics & Physics, 53:2 (2021),  125–131
  2. Generalized Kelly strategy

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:2 (2021),  100–107
  3. Optimizing fire-fighting water supply systems using spatial metrics

    J. Comp. Eng. Math., 7:4 (2020),  3–16
  4. Stochastic modeling of surfaces with modified Gauss functions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 172 (2019),  96–103
  5. On reliability of large-scale nets constructed from identical elements

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 5,  56–62
  6. Mathematical terrain modelling with the help of modified Gaussian functions

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:3 (2019),  63–73
  7. Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust–Pirls model

    Mat. Model., 17:7 (2005),  11–22
  8. Multipliers on the Set of Rademacher Series in Symmetric Spaces

    Funktsional. Anal. i Prilozhen., 36:3 (2002),  87–90
  9. Shift of Spaces by Means of the Hardy and Bellman Transforms

    Funktsional. Anal. i Prilozhen., 34:2 (2000),  89–91
  10. Correction of Haar polynomials used in the compression of graphical information

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 7,  6–10
  11. Hardy and Bellman transformations in spaces close to $L_\infty$ and to $L_1$

    Zap. Nauchn. Sem. POMI, 262 (1999),  204–213
  12. Strong means and oscillation of multiple Fourier series in multiplicative systems

    Mat. Zametki, 63:4 (1998),  607–616
  13. Strong means and the oscillation of multiple Fourier–Walsh series

    Mat. Zametki, 56:3 (1994),  102–117
  14. Extensions of a Certain Weak Type Operator

    Funktsional. Anal. i Prilozhen., 27:1 (1993),  83–86
  15. The tensor BMO-property of the sequence of partial sums of a multiple Fourier series

    Mat. Sb., 184:10 (1993),  91–106
  16. Rectangular oscillation of the sequence of partial sums of a multiple Fourier series and absence of the BMO property

    Mat. Zametki, 52:2 (1992),  152–154
  17. Norms of lacunary polynomials in functional spaces

    Mat. Zametki, 51:3 (1992),  137–139
  18. The BMO-property of partial sums of a Fourier series

    Dokl. Akad. Nauk SSSR, 319:5 (1991),  1079–1081
  19. Pointwise strong summability of multiple Fourier series

    Mat. Zametki, 50:1 (1991),  148–150
  20. The space BMO and strong means of Fourier–Walsh series

    Mat. Sb., 182:10 (1991),  1463–1478
  21. BMO-strong means of Fourier series

    Funktsional. Anal. i Prilozhen., 23:2 (1989),  73–74
  22. Characterization of points of $p$-strong summability of trigonometric series, $p\geq 2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 9,  58–62
  23. Sharp estimates of the Fourier coefficients of summable functions and $K$-functionals

    Mat. Zametki, 32:3 (1982),  295–302
  24. Complementability of the subspace generated by the Rademacher system in a symmetric space

    Funktsional. Anal. i Prilozhen., 13:2 (1979),  91–92
  25. Membership of the sum of a cosine series with monotone coefficients in a symmetric space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 8,  60–64
  26. Fourier coefficients of summable functions

    Mat. Sb. (N.S.), 102(144):3 (1977),  362–371
  27. The Hardy-Littlewood theorem for the cosine series in a symmetric space

    Mat. Zametki, 20:2 (1976),  241–246

  28. Aleksandr Nikolaevich Kabel'kov (1947–2011)

    Vladikavkaz. Mat. Zh., 14:2 (2012),  74–77


© Steklov Math. Inst. of RAS, 2026