|
|
Publications in Math-Net.Ru
-
Unitary extension principle on zero-dimensional locally compact groups
Izv. Saratov Univ. Math. Mech. Inform., 23:3 (2023), 320–338
-
Numerical solution of linear differential equations with discontinuous coefficients and Henstock integral
Izv. Saratov Univ. Math. Mech. Inform., 21:2 (2021), 151–161
-
On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes
Mat. Zametki, 109:3 (2021), 397–406
-
On binary B-splines of second order
Izv. Saratov Univ. Math. Mech. Inform., 18:2 (2018), 172–182
-
Rademacher Chaoses in Problems of Constructing Spline Affine Systems
Mat. Zametki, 103:6 (2018), 863–874
-
Fast discrete Fourier transform on local fields of positive characteristic
Probl. Peredachi Inf., 53:2 (2017), 60–69
-
Shift systems in local fields of zero characteristic
Zap. Nauchn. Sem. POMI, 455 (2017), 25–32
-
Orthogonal shift systems in the field of $p$-adic numbers
Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 256–262
-
Solution of Cauchy problem for equation first order via Haar functions
Izv. Saratov Univ. Math. Mech. Inform., 16:2 (2016), 151–159
-
Riesz multiresolution analysis on zero-dimensional groups
Izv. RAN. Ser. Mat., 79:1 (2015), 153–184
-
On the Orthogonality of a System of Shifts of the Scaling Function on Vilenkin Groups
Mat. Zametki, 98:2 (2015), 310–313
-
MRA on Local Fields of Positive Characteristic
Izv. Saratov Univ. Math. Mech. Inform., 14:4(2) (2014), 511–518
-
Systems of Scales and Shifts in the Problem Still Image Compression
Izv. Saratov Univ. Math. Mech. Inform., 14:4(2) (2014), 505–510
-
Matrix representation of dilation operator on the product of zero-dimensional locally compact Abelian groups
Izv. Saratov Univ. Math. Mech. Inform., 13:2(1) (2013), 8–14
-
Nonorthogonal multiresolution analysis on zero-dimensional locally compact groups
Izv. Saratov Univ. Math. Mech. Inform., 11:3(1) (2011), 25–32
-
Haar System on the Product of Groups of $p$-Adic Integers
Mat. Zametki, 90:4 (2011), 541–557
-
Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases
Mat. Sb., 201:5 (2010), 41–64
-
Fourier series of functions with a non-summable derivative
Izv. RAN. Ser. Mat., 73:2 (2009), 91–108
-
Haar series on compact zero-dimensional abelian group
Izv. Saratov Univ. Math. Mech. Inform., 9:1 (2009), 14–19
-
$\Lambda(\Psi)$-Fluctuation and the Fourier-Walsh series of bounded functions
Sibirsk. Mat. Zh., 48:4 (2007), 811–816
-
The Fourier–Walsh series of the functions absolutely continuous in the generalized restricted sense
Sibirsk. Mat. Zh., 48:2 (2007), 341–352
-
On subsequences of partial sums of Fourier-Walsh series in Lorentz spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 6, 48–55
-
Īn optimal choice of interpolation spline on triangular net
Izv. Saratov Univ. Math. Mech. Inform., 5:1-2 (2005), 26–33
-
Convergence of Walsh Series in Near-$L^\infty$ Spaces
Mat. Zametki, 70:6 (2001), 882–889
-
On the coefficients of lacunary trigonometric series and Rademacher series that converge to sets of measure zero
Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 9, 37–47
-
A criterion for the almost-everywhere convergence of Fourier–Walsh square partial sums of integrable functions
Mat. Sb., 186:7 (1995), 133–146
-
Divergence almost everywhere of square partial sums of Fourier–Walsh series of integrable functions
Mat. Zametki, 56:1 (1994), 57–62
-
On certain classes of sets of uniqueness of multiple Walsh series
Mat. Sb., 180:7 (1989), 937–945
-
Absolute convergence of multiple Walsh series
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 4, 34–36
-
Necessary conditions for sets of uniqueness of Walsh series with
gaps
Mat. Sb. (N.S.), 133(175):4(8) (1987), 469–480
-
Walsh series with gaps
Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 12, 16–19
-
Singularities of carleman type for subsystems of a trigonometric system
Mat. Zametki, 15:4 (1974), 515–520
© , 2026