RUS  ENG
Full version
PEOPLE

Mazalov Vladimir Viktorovich

Publications in Math-Net.Ru

  1. Asymmetric dynamic resource management problem with different regimes

    Mat. Teor. Igr Pril., 17:3 (2025),  92–110
  2. Adaptive control for two-agent opinion dynamics under uncertainty

    Mat. Teor. Igr Pril., 17:1 (2025),  84–105
  3. Two-period optimal control for opinion dynamics

    Contributions to Game Theory and Management, 17 (2024),  105–116
  4. XI International Petrozavodsk Conference «Probabilistic Methods in Discrete Mathematics» dedicated to the 90th anniversary of V. F. Kolchin

    Diskr. Mat., 36:3 (2024),  150–151
  5. Equilibrium in a pricing model for a public transport market

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  182–190
  6. Potential in congestion game with different types of vehicles

    Mat. Teor. Igr Pril., 15:4 (2023),  79–93
  7. Game theoretic centrality of a directed graph vertices

    Mat. Teor. Igr Pril., 15:3 (2023),  64–87
  8. Application of bargaining schemes for equilibrium determination in dynamic games

    Mat. Teor. Igr Pril., 15:2 (2023),  75–88
  9. Cooperative game theory methods for determining text complexity

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023),  509–521
  10. Graph vertices ranking using absolute potentials of electric circuit nodes

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:2 (2023),  233–250
  11. Modeling of the city's transport network using game-theoretic methods on the example of Petrozavodsk

    Contributions to Game Theory and Management, 15 (2022),  18–31
  12. Equilibrium in the problem of choosing the meeting time for $N$ persons

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022),  501–515
  13. Cooperative game theory methods for text ranking

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:1 (2022),  63–78
  14. Opinion control in a team with complete and incomplete communication

    Contributions to Game Theory and Management, 13 (2020),  324–334
  15. Controlling opinion dynamics and consensus and in a social network

    Mat. Teor. Igr Pril., 12:4 (2020),  24–39
  16. Modified Mayerson value for determining the centrality of graph vertices

    Mat. Teor. Igr Pril., 11:2 (2019),  19–39
  17. Optimal stopping strategies in the game “The Price Is Right”

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  217–231
  18. Modeling of influence among the members of the educational team

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:2 (2019),  259–273
  19. Owen-stable coalition partitions in games with vector payoffs

    Mat. Teor. Igr Pril., 10:3 (2018),  3–23
  20. Pricing of platforms in two-sided markets with heterogeneous agents and limited market size

    Mat. Teor. Igr Pril., 10:1 (2018),  83–98
  21. The maximum likelihood method for detecting communities in communication networks

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:3 (2018),  200–214
  22. A Game-Theoretic Model of Virtual Operators Competition in a Two-Sided Telecommunication Market

    Mat. Teor. Igr Pril., 9:3 (2017),  36–63
  23. Linear-quadratic discrete-time dynamic potential games

    Mat. Teor. Igr Pril., 9:1 (2017),  95–107
  24. Game-theoretic methods for finding communities in academic Web

    Tr. SPIIRAN, 55 (2017),  237–254
  25. Ranking of russian academic web

    UBS, 61 (2016),  118–135
  26. Game-theoretic model of TV show "The Voice”

    Mat. Teor. Igr Pril., 7:2 (2015),  14–32
  27. Ranking of nodes in the mathematical portal Math-Net.ru publications graph

    Tr. Karel'skogo Nauchnogo Tsentra RAN. Ser. Mat. Mod. i Inform. Tekhnol., 2015, no. 10,  34–41
  28. Asymmetry in a cooperative bioresource management problem

    UBS, 55 (2015),  280–325
  29. Optimal strategies in the game of patrol on a graph

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 2,  61–76
  30. Generating functions and the Myerson vector in communication networks

    Diskr. Mat., 26:3 (2014),  65–75
  31. Determination of the characteristics associated with passengers traffic in transport systems

    UBS, 47 (2014),  77–91
  32. The bargaining solution among threshold strategies

    Mat. Teor. Igr Pril., 5:2 (2013),  46–63
  33. Stochastic design in cake division problem

    Mat. Teor. Igr Pril., 4:3 (2012),  33–50
  34. Bargaining model with incomplete information

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2012, no. 1,  33–40
  35. Equilibrium in bargaining model with non-uniform distribution for reservation prices

    Mat. Teor. Igr Pril., 3:2 (2011),  37–49
  36. Applying a Reputation Metric in a Two-Player Resource Sharing Game

    Contributions to Game Theory and Management, 3 (2010),  182–191
  37. Game-theoretic models of tender's design

    Mat. Teor. Igr Pril., 2:2 (2010),  66–78
  38. Game-theoretic models of tender design

    UBS, 31.1 (2010),  273–286
  39. Web-communicator creation costs sharing problem as a cooperative game

    UBS, 30.1 (2010),  187–196
  40. Mutual Mate Choice Problem with Arrivals

    Contributions to Game Theory and Management, 2 (2009),  271–280
  41. Equilibrium in $n$-player competitive game of timing

    Mat. Teor. Igr Pril., 1:1 (2009),  67–86
  42. On constructing the scientific journals rating

    UBS, 27 (2009),  47–52
  43. Equilibrium in $n$-player competitive game of timing

    UBS, 26.1 (2009),  55–78
  44. On the rating of official sites of scientific institutions of the russian northwest region

    UBS, 24 (2009),  130–146
  45. Optimal computer memory allocation for the Poisson flows

    Avtomat. i Telemekh., 2008, no. 9,  69–75
  46. Cooperative Incentive Equilibrium for a Bioresource Management Problem

    Contributions to Game Theory and Management, 1 (2007),  316–325
  47. Nash equilibrium in environmental problems

    Mat. Model., 18:5 (2006),  73–90
  48. On asymptotic properties of optimal stopping time

    Teor. Veroyatnost. i Primenen., 48:3 (2003),  583–589
  49. A game with optimal stopping of random walks

    Teor. Veroyatnost. i Primenen., 42:4 (1997),  820–826
  50. Optimal stopping of observations in problems of the control of random walks

    Teor. Veroyatnost. i Primenen., 35:4 (1990),  669–676
  51. Games with Stopping Rules Based on Wiener Process

    Teor. Veroyatnost. i Primenen., 33:3 (1988),  590–591

  52. Letter to the editors

    Diskr. Mat., 31:2 (2019),  159
  53. Валентин Федорович Колчин (1934–2016)

    Diskr. Mat., 28:4 (2016),  3–5
  54. Book review

    Mat. Teor. Igr Pril., 4:2 (2012),  124–125
  55. International Conference “Stochastical Optimal Stopping”

    Teor. Veroyatnost. i Primenen., 55:4 (2010),  823–824
  56. Russian-Scandinavian symposium “Probability Theory and Applied Probability”

    Teor. Veroyatnost. i Primenen., 52:1 (2007),  204–205


© Steklov Math. Inst. of RAS, 2026