RUS  ENG
Full version
PEOPLE

Galkin Valery Alekseevich

Publications in Math-Net.Ru

  1. Solutions of the momentum chains for the transport equation and their approximations

    Mat. Model., 24:11 (2012),  65–71
  2. Вычислительная модель пространственно неоднородной медленной коагуляции

    Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012),  2101–2112
  3. Mathematical modeling of coagulation kinetic

    Mat. Model., 18:1 (2006),  99–116
  4. Case of a Boltzmann gas leading to the Smoluchowski coagulation equation

    Zh. Vychisl. Mat. Mat. Fiz., 46:3 (2006),  536–549
  5. Exact and numerical solutions of nonlinear thermal conductivity and kinetic equations for crystallization simulation

    Mat. Model., 13:12 (2001),  46–54
  6. Modeling of coagulation process in spatial uniform case

    Mat. Model., 11:6 (1999),  82–112
  7. Choice of global correctness classes of functional solutions for conservation laws systems

    Fundam. Prikl. Mat., 4:3 (1998),  853–868
  8. Justification of approximate methods for systems of conservation laws

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 6,  55–59
  9. Convergence of approximated methods for incompressible fluid dynamics equations

    Mat. Model., 6:3 (1994),  101–113
  10. Functional solutions of conservation laws

    Dokl. Akad. Nauk SSSR, 310:4 (1990),  834–839
  11. Solvability in the mean of a system of quasilinear conservation laws

    Dokl. Akad. Nauk SSSR, 300:6 (1988),  1300–1304
  12. On the solutions of equations connected with physical kinetics

    Dokl. Akad. Nauk SSSR, 298:6 (1988),  1362–1367
  13. Generalized solution of the Smoluchowski kinetic equation for spatially inhomogeneous systems

    Dokl. Akad. Nauk SSSR, 293:1 (1987),  74–77
  14. Solutions of a coagulation equation with unbounded kernels

    Differ. Uravn., 22:3 (1986),  504–509
  15. The Smoluchowski equation of the kinetic theory of coagulation for spatially inhomogeneous systems

    Dokl. Akad. Nauk SSSR, 285:5 (1985),  1087–1091
  16. Solutions of an equation of coagulation

    Differ. Uravn., 17:4 (1981),  669–677
  17. An iterative method of solving a class of evolution equations connected with physical kinetics

    Zh. Vychisl. Mat. Mat. Fiz., 21:2 (1981),  385–399
  18. Stability and stabilization of the solutions of the coagulation equation

    Differ. Uravn., 14:10 (1978),  1863–1874
  19. The existence and uniqueness of the solution of the coagulation equation

    Differ. Uravn., 13:8 (1977),  1460–1470


© Steklov Math. Inst. of RAS, 2026