RUS  ENG
Full version
PEOPLE

Shapoval Alexandr Borisovich

Publications in Math-Net.Ru

  1. Hypergeometric functions in model of general equilibrium of multisector economy with monopolistic competition

    Computer Research and Modeling, 9:5 (2017),  825–836
  2. Languages in China provinces: quantitative estimation with incomplete data

    Computer Research and Modeling, 8:4 (2016),  707–716
  3. Mismatch of supply and demand as a response to demand uncertainty

    Contemporary Mathematics and Its Applications, 95 (2015),  32–47
  4. Time-clusterring of stock indicies’ big fall

    Computer Research and Modeling, 4:3 (2012),  631–638
  5. Universality of algorithmic prediction for extremes of time series

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2011, no. 4,  58–65
  6. Universality of algorithms predicting strong events in complex systems

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2011, no. 1,  24–34
  7. Numerical-analytical algorithm for estimating the predictability of crashes

    Mat. Model., 23:8 (2011),  65–74
  8. Attractors of Nonlinear Elliptic Equations with a Small Parameter

    Differ. Uravn., 37:9 (2001),  1239–1249
  9. Growth of solutions of nonlinear degenerating elliptic inequalities in unbounded domains

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 3,  3–7
  10. On the boundedness of solutions of a class of quasilinear parabolic equations

    Differ. Uravn., 34:6 (1998),  844–845
  11. Liouville's theorem for a second-order elliptic equation with degenerate coefficients

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 2,  21–26
  12. The integral manifold of a nonlinear elliptic equation in a cylinder

    Mat. Zametki, 61:3 (1997),  476–480
  13. Integral manifolds of nonautonomous evolution differential equations

    Mat. Zametki, 61:2 (1997),  317–320
  14. Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain

    Mat. Zametki, 60:4 (1996),  556–568


© Steklov Math. Inst. of RAS, 2026