RUS  ENG
Full version
PEOPLE

Zhensykbaev Alexander Alipkanovich

Publications in Math-Net.Ru

  1. Reconstruction of operators in the classes of functions with restrictions in integral norms

    Dokl. Akad. Nauk, 351:6 (1996),  735–737
  2. Nonlinear interpolation and norm minimization

    Mat. Zametki, 58:4 (1995),  512–524
  3. Information-nuclear splines in recovery problems

    Dokl. Akad. Nauk, 328:3 (1993),  285–288
  4. Spline approximation and optimal recovery of operators

    Mat. Sb., 184:12 (1993),  3–22
  5. Monosplines of minimal $L_1$-norm

    Mat. Zametki, 33:6 (1983),  863–879
  6. Extremality of monosplines of minimal deficiency

    Izv. Akad. Nauk SSSR Ser. Mat., 46:6 (1982),  1175–1198
  7. Extremal properties of monosplines and best quadrature formulas

    Mat. Zametki, 31:2 (1982),  281–298
  8. Monosplines of minimal norm and the best quadrature formulae

    Uspekhi Mat. Nauk, 36:4(220) (1981),  107–159
  9. Monosplines deviating least from zero and best quadrature formulas

    Dokl. Akad. Nauk SSSR, 249:2 (1979),  278–281
  10. Spline interpolation and best approximation by trigonometric polynomials

    Mat. Zametki, 26:3 (1979),  355–366
  11. Characteristic properties of best quadrature formulas

    Sibirsk. Mat. Zh., 20:1 (1979),  49–68
  12. One property of best quadrature formulas

    Mat. Zametki, 23:4 (1978),  551–562
  13. Best quadrature formulas for some classes of nonperiodic functions

    Dokl. Akad. Nauk SSSR, 236:3 (1977),  531–534
  14. Best quadrature formula for some classes of periodic differentiable functions

    Izv. Akad. Nauk SSSR Ser. Mat., 41:5 (1977),  1110–1124
  15. On the best quadrature formula on the class $W^rL_p$

    Dokl. Akad. Nauk SSSR, 227:2 (1976),  277–279
  16. Approximation of certain classes of differentiable periodic functions by interpolational splines in a uniform decomposition

    Mat. Zametki, 15:6 (1974),  955–966
  17. The approximation of periodic differentiable functions by splines with respect to a uniform partition

    Mat. Zametki, 13:6 (1973),  807–816
  18. Exact bounds for the uniform approximation of continuous periodic functions by $r$-th order splines

    Mat. Zametki, 13:2 (1973),  217–228

  19. Nikolai Pavlovich Korneichuk (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 36:2(218) (1981),  209–213


© Steklov Math. Inst. of RAS, 2026