RUS  ENG
Full version
PEOPLE

Starkov Aleksandr Nikolaevich

Publications in Math-Net.Ru

  1. Minimality and unique ergodicity of homogeneous actions

    Mat. Zametki, 66:2 (1999),  293–301
  2. Tychonoff property for linear groups

    Mat. Zametki, 63:2 (1998),  269–279
  3. New progress in the theory of homogeneous flows

    Uspekhi Mat. Nauk, 52:4(316) (1997),  87–192
  4. Mutual isomorphisms of translations of a homogeneous flow

    Mat. Zametki, 58:1 (1995),  98–110
  5. Invariant sets of homogeneous flows and Ratner's theorem

    Uspekhi Mat. Nauk, 49:2(296) (1994),  169–170
  6. Multiple mixing of homogeneous flows

    Dokl. Akad. Nauk, 333:4 (1993),  442–445
  7. Dynamical systems with hyperbolic behavior

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 66 (1991),  5–242
  8. Horospherical flows on homogeneous spaces of finite volume

    Mat. Sb., 182:5 (1991),  774–784
  9. Structure of orbits of homogeneous flows and the Ragunatana conjecture

    Uspekhi Mat. Nauk, 45:2(272) (1990),  219–220
  10. Ergodic decomposition of flows on homogeneous spaces of finite volume

    Mat. Sb., 180:12 (1989),  1614–1633
  11. Reduction of the theory of homogeneous flows to the case of a discrete isotropy subgroup

    Dokl. Akad. Nauk SSSR, 301:6 (1988),  1328–1331
  12. An ergodic decomposition for homogeneous flows

    Izv. Akad. Nauk SSSR Ser. Mat., 51:6 (1987),  1191–1213
  13. On a criterion for ergodicity of $G$-induced flows

    Uspekhi Mat. Nauk, 42:3(255) (1987),  197–198
  14. Solvable homogeneous flows

    Mat. Sb. (N.S.), 134(176):2(10) (1987),  242–259
  15. Nonergodic uniform flows

    Dokl. Akad. Nauk SSSR, 288:3 (1986),  560–562
  16. On spaces of finite volume

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5,  64–66
  17. Flows on compact solvmanifolds

    Mat. Sb. (N.S.), 123(165):4 (1984),  549–556
  18. A counterexample to a theorem on lattices in Lie groups

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 5,  68–69
  19. Ergodic behavior of flows on homogeneous spaces

    Dokl. Akad. Nauk SSSR, 273:3 (1983),  538–540
  20. On the density of orbits through a given point in a homogeneous space

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 1,  14–16


© Steklov Math. Inst. of RAS, 2026