|
|
Publications in Math-Net.Ru
-
Minimality and unique ergodicity of homogeneous actions
Mat. Zametki, 66:2 (1999), 293–301
-
Tychonoff property for linear groups
Mat. Zametki, 63:2 (1998), 269–279
-
New progress in the theory of homogeneous flows
Uspekhi Mat. Nauk, 52:4(316) (1997), 87–192
-
Mutual isomorphisms of translations of a homogeneous flow
Mat. Zametki, 58:1 (1995), 98–110
-
Invariant sets of homogeneous flows and Ratner's theorem
Uspekhi Mat. Nauk, 49:2(296) (1994), 169–170
-
Multiple mixing of homogeneous flows
Dokl. Akad. Nauk, 333:4 (1993), 442–445
-
Dynamical systems with hyperbolic behavior
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 66 (1991), 5–242
-
Horospherical flows on homogeneous spaces of finite volume
Mat. Sb., 182:5 (1991), 774–784
-
Structure of orbits of homogeneous flows and the Ragunatana conjecture
Uspekhi Mat. Nauk, 45:2(272) (1990), 219–220
-
Ergodic decomposition of flows on homogeneous spaces of finite volume
Mat. Sb., 180:12 (1989), 1614–1633
-
Reduction of the theory of homogeneous flows to the case of a
discrete isotropy subgroup
Dokl. Akad. Nauk SSSR, 301:6 (1988), 1328–1331
-
An ergodic decomposition for homogeneous flows
Izv. Akad. Nauk SSSR Ser. Mat., 51:6 (1987), 1191–1213
-
On a criterion for ergodicity of $G$-induced flows
Uspekhi Mat. Nauk, 42:3(255) (1987), 197–198
-
Solvable homogeneous flows
Mat. Sb. (N.S.), 134(176):2(10) (1987), 242–259
-
Nonergodic uniform flows
Dokl. Akad. Nauk SSSR, 288:3 (1986), 560–562
-
On spaces of finite volume
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5, 64–66
-
Flows on compact solvmanifolds
Mat. Sb. (N.S.), 123(165):4 (1984), 549–556
-
A counterexample to a theorem on lattices in Lie groups
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 5, 68–69
-
Ergodic behavior of flows on homogeneous spaces
Dokl. Akad. Nauk SSSR, 273:3 (1983), 538–540
-
On the density of orbits through a given point in a homogeneous space
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 1, 14–16
© , 2026