RUS  ENG
Full version
PEOPLE

Kachurovskii Alexander Grigoryevich

Publications in Math-Net.Ru

  1. Convergence rates in the ergodic theorem for unitary actions of compactly generated abelian groups

    Sibirsk. Mat. Zh., 66:3 (2025),  438–449
  2. Correlations and rates of convergence in general ergodic theorems

    Teor. Veroyatnost. i Primenen., 70:4 (2025),  672–689
  3. A spectral criterion for power-law convergence rate in the ergodic theorem for ${\Bbb Z}^d$ and ${\Bbb R}^d$ actions

    Sibirsk. Mat. Zh., 65:1 (2024),  92–114
  4. Uniform Convergence on Subspaces in von Neumann Ergodic Theorem with Discrete Time

    Mat. Zametki, 113:5 (2023),  713–730
  5. Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time

    Sib. Èlektron. Mat. Izv., 20:1 (2023),  183–206
  6. Zero-One law for the rates of convergence in the Birkhoff ergodic theorem with continuous time

    Mat. Tr., 24:2 (2021),  65–80
  7. Von Neumann's ergodic theorem and Fejer sums for signed measures on the circle

    Sib. Èlektron. Mat. Izv., 17 (2020),  1313–1321
  8. The maximum pointwise rate of convergence in Birkhoff's ergodic theorem

    Zap. Nauchn. Sem. POMI, 498 (2020),  18–25
  9. Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem

    Mat. Zametki, 106:1 (2019),  40–52
  10. The Fejer integrals and the von Neumann ergodic theorem with continuous time

    Zap. Nauchn. Sem. POMI, 474 (2018),  171–182
  11. Large deviations of the ergodic averages: from Hölder continuity to continuity almost everywhere

    Mat. Tr., 20:1 (2017),  97–120
  12. Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems

    Tr. Mosk. Mat. Obs., 77:1 (2016),  1–66
  13. Large Deviations and the Rate of Convergence in the Birkhoff Ergodic Theorem

    Mat. Zametki, 94:4 (2013),  569–577
  14. On the Constants in the Estimates of the Rate of Convergence in the Birkhoff Ergodic Theorem

    Mat. Zametki, 91:4 (2012),  624–628
  15. Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems

    Mat. Sb., 202:8 (2011),  21–40
  16. Constants in the estimates of the rate of convergence in von Neumann's ergodic theorem with continuous time

    Sibirsk. Mat. Zh., 52:5 (2011),  1039–1052
  17. On the Constants in the Estimates of the Rate of Convergence in von Neumann's Ergodic Theorem

    Mat. Zametki, 87:5 (2010),  756–763
  18. On the rate of convergence in von Neumann's ergodic theorem with continuous time

    Mat. Sb., 201:4 (2010),  25–32
  19. General Theories Unifying Ergodic Averages and Martingales

    Trudy Mat. Inst. Steklova, 256 (2007),  172–200
  20. The entropy brick of an automorphism of a Lebesgue space

    Mat. Zametki, 80:6 (2006),  943–945
  21. Convergence of averages in the ergodic theorem for groups $\mathbb Z^d$

    Zap. Nauchn. Sem. POMI, 256 (1999),  121–128
  22. Martingale ergodic theorem

    Mat. Zametki, 64:2 (1998),  311–314
  23. Spectral measures and convergence rates in the ergodic theorem

    Dokl. Akad. Nauk, 347:5 (1996),  593–596
  24. The rate of convergence in ergodic theorems

    Uspekhi Mat. Nauk, 51:4(310) (1996),  73–124
  25. Fluctuation of means in the Birkhoff-Khinchin ergodic theorem

    Trudy Inst. Mat. SO RAN, 21 (1992),  52–86
  26. Time fluctuations in the statistical ergodic theorem

    Mat. Zametki, 52:1 (1992),  146–148
  27. A fluctuation ergodic theorem

    Dokl. Akad. Nauk SSSR, 317:4 (1991),  823–826
  28. Fluctuation of averages in the strong law of large numbers

    Mat. Zametki, 50:5 (1991),  151–153
  29. Boundedness of the fluctuation of mean sequences in the ergodic Birkhoff–Khinchin theorem

    Dokl. Akad. Nauk SSSR, 315:3 (1990),  530–532
  30. Existence of an invariant measure in topological dynamical systems

    Sibirsk. Mat. Zh., 27:4 (1986),  203–207


© Steklov Math. Inst. of RAS, 2026