RUS  ENG
Full version
PEOPLE

Vechtomov Evgeniy Mikhailovich

Publications in Math-Net.Ru

  1. Two classes of semilattices with retractive properties

    Mat. Zametki, 119:2 (2026),  181–187
  2. About semimodules over the trivial semiring

    Chebyshevskii Sb., 26:3 (2025),  71–80
  3. Multiplicatively idempotent semirings with annihilator condition. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 6,  21–31
  4. Commutative Multiplicatively Idempotent Semirings with the Identity $x+2xy=x$

    Mat. Zametki, 118:2 (2025),  191–205
  5. Determinability of topological spaces by the semigroup of continuous binary relations

    Mat. Zametki, 117:2 (2025),  196–203
  6. On upper conditionally complete generalized Boolean lattices

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025),  85–94
  7. Distributive lattices with different annihilator properties

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  53–65
  8. Multiplicatively idempotent semirings with annihilator condition

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 3,  29–40
  9. Lambek functional representation of generalized symmetric semirings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 2,  26–35
  10. Semigroups of Relatively Continuous Binary Relations and Their Isomorphisms

    Mat. Zametki, 113:6 (2023),  807–819
  11. Semirings of continuous partial numerical functions with extended addition

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023),  56–66
  12. Subalgebras in semirings of continuous partial real-valued functions

    Fundam. Prikl. Mat., 24:1 (2022),  125–140
  13. Multiplicatively Idempotent Semirings in which All Congruences Are Ideal

    Mat. Zametki, 112:3 (2022),  376–383
  14. Completely Prime Ideals in Multiplicatively Idempotent Semirings

    Mat. Zametki, 111:4 (2022),  494–505
  15. Finite cyclic semirings with semilattice additive operation defined by two-generated ideal of natural numbers

    Chebyshevskii Sb., 21:1 (2020),  82–100
  16. Pseudocomplements in the lattice of subvarieties of a variety of multiplicatively idempotent semirings

    Fundam. Prikl. Mat., 21:3 (2016),  107–120
  17. Semirings of continuous functions

    Fundam. Prikl. Mat., 21:2 (2016),  53–131
  18. Semirings of continuous $(0,\infty]$-valued functions

    Fundam. Prikl. Mat., 20:6 (2015),  43–64
  19. Cyclic semirings with nonidempotent noncommutative addition

    Fundam. Prikl. Mat., 20:6 (2015),  17–41
  20. Definability of Hewitt spaces by the lattices of subalgebras of semifields of continuous positive functions with max-plus

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  78–88
  21. Variety of semirings generated by two-element semirings with commutative idempotent multiplication

    Chebyshevskii Sb., 15:3 (2014),  12–30
  22. Multiplicatively idempotent semirings

    Fundam. Prikl. Mat., 18:4 (2013),  41–70
  23. Closed ideals and closed congruences of semirings of $[0,1]$-valued functions with topology of pointwise convergence

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  83–93
  24. The semiring of continous $[0,1]$-valued functions

    Fundam. Prikl. Mat., 17:4 (2012),  53–82
  25. Cyclic semirings with idempotent noncommutative addition

    Fundam. Prikl. Mat., 17:1 (2012),  33–52
  26. The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 1,  87–91
  27. About prime ideals in semirings of continuous function with values in unit segment

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 2,  12–18
  28. Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions

    Fundam. Prikl. Mat., 16:3 (2010),  63–103
  29. Extension of Congruences on Semirings of Continuous Functions

    Mat. Zametki, 85:6 (2009),  803–816
  30. Semifields with generator

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 3,  25–33
  31. Semifields and their properties

    Fundam. Prikl. Mat., 14:5 (2008),  3–54
  32. The principal kernels of semifields of continuous positive functions

    Fundam. Prikl. Mat., 14:4 (2008),  87–107
  33. Semirings which are the unions of a ring and a semifield

    Uspekhi Mat. Nauk, 63:6(384) (2008),  159–160
  34. On the theory of semidivision rings

    Uspekhi Mat. Nauk, 63:2(380) (2008),  161–162
  35. Structure of abelian regular positive semirings

    Uspekhi Mat. Nauk, 62:1(373) (2007),  199–200
  36. Semirings of continuous nonnegative functions: divisibility, ideals, congruences

    Fundam. Prikl. Mat., 4:2 (1998),  493–510
  37. Lattice of subalgebras of the ring of continuous functions and Hewitt spaces

    Mat. Zametki, 62:5 (1997),  687–693
  38. Distributive lattices which have chain functional representation

    Fundam. Prikl. Mat., 2:1 (1996),  93–102
  39. Divisibility in the rings $C(X,F)$ of continuous functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 1,  7–16
  40. A duality for topological semirings of continuous functions

    Uspekhi Mat. Nauk, 51:3(309) (1996),  187–188
  41. Rings of continuous functions and their maximal spectra

    Mat. Zametki, 55:6 (1994),  32–49
  42. On the general theory of rings of continuous functions

    Uspekhi Mat. Nauk, 49:3(297) (1994),  177–178
  43. Annihilator characterizations of Boolean rings and Boolean lattices

    Mat. Zametki, 53:2 (1993),  15–24
  44. Rings of continuous functions and sheaves of rings

    Uspekhi Mat. Nauk, 48:5(293) (1993),  167–168
  45. Rings of continuous functions and the theory of Gel'fand

    Uspekhi Mat. Nauk, 48:1(289) (1993),  163–164
  46. On the Gel'fand–Kolmogorov theorem on maximal ideals of rings of continuous functions

    Uspekhi Mat. Nauk, 47:5(287) (1992),  171–172
  47. Rings of continuous functions. Algebraic aspects

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 29 (1991),  119–191
  48. Questions on the determination of topological spaces by algebraic systems of continuous functions

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 28 (1990),  3–46
  49. On semigroups of continuous partial functions of topological spaces

    Uspekhi Mat. Nauk, 45:4(274) (1990),  143–144
  50. Boolean rings

    Mat. Zametki, 39:2 (1986),  182–185
  51. Distributive rings of continuous functions and $F$-spaces

    Mat. Zametki, 34:3 (1983),  321–332
  52. On the module of functions with compact support over a ring of continuous functions

    Uspekhi Mat. Nauk, 37:4(226) (1982),  151–152
  53. Ideals of rings of continuous functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 1,  3–10
  54. Module of all functions over the ring of continuous functions

    Mat. Zametki, 28:4 (1980),  481–490
  55. Isomorphism of the multiplicative semigroups of algebras of continuous functions with compact support

    Uspekhi Mat. Nauk, 33:5(203) (1978),  175–176
  56. The isomorphism of multiplicative semigroups of rings of continuous functions

    Sibirsk. Mat. Zh., 19:4 (1978),  759–771

  57. Correction of the paper “Distributive lattices which have chain functional representation”

    Fundam. Prikl. Mat., 3:1 (1997),  315


© Steklov Math. Inst. of RAS, 2026