RUS  ENG
Full version
PEOPLE

Bondarko Mikhail Vladimirovich

Publications in Math-Net.Ru

  1. Producing new semi-orthogonal decompositions in arithmetic geometry

    Mat. Sb., 215:4 (2024),  81–116
  2. Killing Weights from the Perspective of $t$-Structures

    Trudy Mat. Inst. Steklova, 320 (2023),  59–70
  3. Smooth weight structures and birationality filtrations on motivic categories

    Algebra i Analiz, 33:5 (2021),  51–79
  4. The hearts of weight structures are the weakly idempotent complete categories

    Chebyshevskii Sb., 21:3 (2020),  29–38
  5. On Chow-weight homology of motivic complexes and its relation to motivic homology

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:4 (2020),  560–587
  6. On Chow weight structures without projectivity and resolution of singularities

    Algebra i Analiz, 30:5 (2018),  57–83
  7. A nullstellensatz for triangulated categories

    Algebra i Analiz, 27:6 (2015),  41–56
  8. On Chow weight structures for $cdh$-motives with integral coefficients

    Algebra i Analiz, 27:6 (2015),  14–40
  9. Explicit form of Hilbert symbol for polynomial formal groups over multidimensional local field. I

    Zap. Nauchn. Sem. POMI, 430 (2014),  53–60
  10. Non-abelian associated orders of wildly ramified local field extensions

    Zap. Nauchn. Sem. POMI, 356 (2008),  5–45
  11. Canonical Representatives in Strict Isomorphism Classes of Formal Groups

    Mat. Zametki, 82:2 (2007),  183–189
  12. Leopoldt's problem for Abelian totally ramified extensions of complete discrete valuation fields

    Algebra i Analiz, 18:5 (2006),  99–129
  13. Classification of finite commutative group schemes over complete discrete valuation rings; the tangent space and semistable reduction of Abelian varieties

    Algebra i Analiz, 18:5 (2006),  72–98
  14. The generic fibre of finite group schemes; a “finite wild” criterion for good reduction of Abelian varieties

    Izv. RAN. Ser. Mat., 70:4 (2006),  21–52
  15. Isogeny classes of formal groups over complete discrete valuation fields with an arbitrary residue field

    Algebra i Analiz, 17:6 (2005),  105–124
  16. Restriction of the scalars for formal groups

    Zap. Nauchn. Sem. POMI, 319 (2004),  59–70
  17. The Hilbert pairing for formal groups over $\sigma$-rings

    Zap. Nauchn. Sem. POMI, 319 (2004),  5–58
  18. An Explicit Classification of Formal Groups over Local Fields

    Trudy Mat. Inst. Steklova, 241 (2003),  43–67
  19. Additive Galois modules in Dedekind rings. Decomposability

    Algebra i Analiz, 11:6 (1999),  103–121
  20. Decomposability of ideals as Galois modules in complete discrete valuation fields

    Algebra i Analiz, 11:2 (1999),  41–63
  21. Krull-Schmidt theorem for Henselian rings

    Zap. Nauchn. Sem. POMI, 265 (1999),  29–41
  22. Idempotents in the endomorphism ring of an ideal in a $p$-extension of a complete discrete valuation field with residue field of characteristic $p$ as a Galois module

    Zap. Nauchn. Sem. POMI, 265 (1999),  22–28
  23. Shafarevich bases in topological $K$-groups

    Algebra i Analiz, 10:2 (1998),  63–80
  24. Additive Galois modules in complete discrete valuation fields

    Algebra i Analiz, 9:4 (1997),  28–46
  25. A decomposition of ideals in an Abelian $p$-extension of complete discretely valuated fields.

    Zap. Nauchn. Sem. POMI, 236 (1997),  23–33

  26. Sergey Vladimirovich Vostokov (13.04.1945 — 6.03.2025)

    Chebyshevskii Sb., 26:3 (2025),  416–418
  27. To the anniversary of Sergei Vladimirovich Vostokov

    Algebra i Analiz, 27:6 (2015),  3–5


© Steklov Math. Inst. of RAS, 2026