RUS  ENG
Full version
PEOPLE

Dremin Anatoly Nikolaevich

Publications in Math-Net.Ru

  1. Shock compressibility and spallation strength of cubic modification of polycrystalline boron nitride

    TVT, 47:5 (2009),  659–666
  2. Two-dimensional cellular structure of a kinetically unstable detonation front

    Fizika Goreniya i Vzryva, 44:4 (2008),  80–86
  3. Energy release of mixed explosives during propagation of a nonideal detonation under conditions similar to the operation conditions of a blasthole charge

    Fizika Goreniya i Vzryva, 43:4 (2007),  111–120
  4. Discoveries in detonation of molecular condensed explosives in the 20th Century

    Fizika Goreniya i Vzryva, 36:6 (2000),  31–44
  5. Possibility of the formation of diamonds as a result of the detonation of picric acid

    Fizika Goreniya i Vzryva, 27:4 (1991),  117–121
  6. Discontinuity in the relation between the speed of detonation and the initial density of TNT

    Fizika Goreniya i Vzryva, 25:5 (1989),  141–144
  7. Microstructural mechanisms of spall fraction of iron

    Fizika Goreniya i Vzryva, 25:4 (1989),  101–108
  8. Development of polymorphic transformations of added substances in measurements of wave and mass velocities for detonation of an explosive

    Fizika Goreniya i Vzryva, 23:1 (1987),  74–77
  9. Properties of high pressure deformed silicon crystals

    Fizika Tverdogo Tela, 29:5 (1987),  1486–1491
  10. The numerical investigation of three-dimensional problems of cylindrical body failure under asymmetric dynamic contact conditions

    Dokl. Akad. Nauk SSSR, 288:6 (1986),  1331–1334
  11. Electrical conductivity measurement in studying physicochemical charges in conservation tubes

    Fizika Goreniya i Vzryva, 22:6 (1986),  130–134
  12. Dependence of the pressure of a shock-initiated graphite–diamond transformation on the initial graphite density and the hysteresis line of this transformation

    Fizika Goreniya i Vzryva, 22:6 (1986),  125–130
  13. Electrical conductivity and compressibility of sulfur under shock loading

    Fizika Goreniya i Vzryva, 22:4 (1986),  106–109
  14. Singularity of the particle-velocity profile of a detonation wave in a high explosive containing an additive that undergoes polymorphic conversion

    Fizika Goreniya i Vzryva, 22:3 (1986),  136–137
  15. Flow instability resulting from the symmetrical collision of jets of an ideal fluid

    Fizika Goreniya i Vzryva, 22:3 (1986),  103–109
  16. Effect of carbon and boron nitride additions on detonation of explosives

    Fizika Goreniya i Vzryva, 22:3 (1986),  99–103
  17. Continuous recording of free surface velocity during spalling fallure of iron in the cryogenic temperature range

    Fizika Goreniya i Vzryva, 22:2 (1986),  110–114
  18. Evaluation of the kinetics of a nonequilibrium process in a one-dimenstonal plane stress wave

    Fizika Goreniya i Vzryva, 22:2 (1986),  105–110
  19. Electrical response of piezocomposition materials to shock waves

    Fizika Goreniya i Vzryva, 22:1 (1986),  118–123
  20. Explosion processes pulsating along the charge in porous explosives

    Fizika Goreniya i Vzryva, 21:6 (1985),  123–125
  21. Mechanical energy dissipation and damping factor in spall-damaged material

    Fizika Goreniya i Vzryva, 20:2 (1984),  79–86
  22. Shock-wave-induced electrical polarization of polyvinyl chloride plastic

    Fizika Goreniya i Vzryva, 19:5 (1983),  163–166
  23. Measurement of sodium chloride electrical conductivity under quasiisentropic compression to 140 GPa

    Fizika Goreniya i Vzryva, 19:5 (1983),  160–163
  24. Temperature dependence of the spall strength

    Fizika Goreniya i Vzryva, 19:5 (1983),  154–158
  25. Pulsating detonation front

    Fizika Goreniya i Vzryva, 19:4 (1983),  159–169
  26. Utilization of a Helmholtz coil in the electromagnetic method

    Fizika Goreniya i Vzryva, 19:4 (1983),  146–149
  27. Polymerization reaction as a method of investigating the state of the molecules in a crystal lattice subjected to shock-wave loading

    Fizika Goreniya i Vzryva, 19:2 (1983),  95–99
  28. Extension of the principles of the kinetic conception of strength to the process of spalling fracture

    Fizika Goreniya i Vzryva, 19:1 (1983),  88–94
  29. Shear stress and high pressure effects on electroconductivity of $\mathrm{Si}$ and $\mathrm{Ge}$ single crystals

    Fizika Tverdogo Tela, 25:7 (1983),  1989–1993
  30. Wave formation features for large collision angles of metal plates

    Fizika Goreniya i Vzryva, 18:2 (1982),  104–110
  31. Detonation of highly dilute porous explosives. II. Influence of inert additive on the structure of the front, the parameters, and the reaction time

    Fizika Goreniya i Vzryva, 18:1 (1982),  79–90
  32. Polymorphic transformation of iron in a shock

    Fizika Goreniya i Vzryva, 17:3 (1981),  93–102
  33. Resistance of aluminum AD-1 and duraluminum D-16 to plastic deformation under shock compression conditions

    Prikl. Mekh. Tekh. Fiz., 22:4 (1981),  132–138
  34. Shock-wave front structure in solids

    Dokl. Akad. Nauk SSSR, 251:6 (1980),  1379–1381
  35. Subcritical stage of cleavage fracture of polymethyl methacrylate

    Fizika Goreniya i Vzryva, 16:5 (1980),  74–77
  36. Wave formation during high velocity collision of metals

    Fizika Goreniya i Vzryva, 16:4 (1980),  126–132
  37. Electrical conductivity of tetranitromethane detonation products

    Fizika Goreniya i Vzryva, 16:4 (1980),  116–120
  38. Detonation of highly diluted porous explosives. I. Effect of inert additives on detonation parameters

    Fizika Goreniya i Vzryva, 16:3 (1980),  92–101
  39. Unstable detonation front structure in liquid explosives

    Fizika Goreniya i Vzryva, 16:3 (1980),  82–92
  40. Kinetic characteristics of spall fracture

    Prikl. Mekh. Tekh. Fiz., 21:6 (1980),  85–95
  41. Shock wave front structure in a liquid

    Dokl. Akad. Nauk SSSR, 249:4 (1979),  840–843
  42. Yulii Borisovich Kahriton (on his 75th birthday)

    Fizika Goreniya i Vzryva, 15:6 (1979),  163–165
  43. Evolution of an initiating shock in a high explosive (HE) as a function of the singularities of the decomposition kinetics

    Fizika Goreniya i Vzryva, 15:4 (1979),  150–152
  44. Physical properties and conversion of nitrobenzene at dynamic pressures up to 30 GPa

    Fizika Goreniya i Vzryva, 15:2 (1979),  132–139
  45. Electrical polarization with initiation of the detonation of homogeneous explosives by a shock wave

    Fizika Goreniya i Vzryva, 14:6 (1978),  101–106
  46. Theory of waves on the interface of metals welded by explosion

    Fizika Goreniya i Vzryva, 14:4 (1978),  77–86
  47. Kinetics of pressed-TNT decomposition behind a shock front

    Fizika Goreniya i Vzryva, 14:3 (1978),  111–116
  48. Metrological characteristics of manganin pressure pickups under conditions of shock compression and unloading

    Fizika Goreniya i Vzryva, 14:2 (1978),  130–135
  49. Investigation of the structure of shock waves in boron nitride and graphite in the region of polymorphous transformation

    Prikl. Mekh. Tekh. Fiz., 19:3 (1978),  112–117
  50. Investigation of singularities of glass strain under intense compression waves

    Fizika Goreniya i Vzryva, 13:6 (1977),  906–912
  51. Nonstationary phenomena in detonation of poured TNT

    Fizika Goreniya i Vzryva, 13:5 (1977),  746–750
  52. Wave formation with the high-speed collision of metallic bodies

    Fizika Goreniya i Vzryva, 13:2 (1977),  288–290
  53. Determination of the parameters of shock compression with the explosion pressing of metallic powders

    Fizika Goreniya i Vzryva, 13:1 (1977),  115–117
  54. Decomposition of cast trotyl in shock waves

    Fizika Goreniya i Vzryva, 13:1 (1977),  85–92
  55. Analysis of the evolution of detonation waves

    Fizika Goreniya i Vzryva, 13:1 (1977),  69–77
  56. Experimental determination of the dependence of the wavelength on the angle of collision in the process of the explosive welding of metals

    Fizika Goreniya i Vzryva, 12:4 (1976),  601–605
  57. Measurement of the temperature in the zone of the seam with the explosive welding of metals

    Fizika Goreniya i Vzryva, 12:4 (1976),  594–601
  58. Shock-induced electrical polarization of nitroglycerine

    Fizika Goreniya i Vzryva, 12:2 (1976),  251–255
  59. Compression and rarefaction waves in shock-compressed metals

    Prikl. Mekh. Tekh. Fiz., 17:2 (1976),  146–153
  60. Formation of cubic boron nitride by shock compression

    Fizika Goreniya i Vzryva, 11:5 (1975),  773–776
  61. Electrical effects in shock compression and detonation of liquid high explosives

    Fizika Goreniya i Vzryva, 11:3 (1975),  438–444
  62. Electrical properties of nitromethane under shock compression

    Fizika Goreniya i Vzryva, 11:2 (1975),  300–304
  63. Evaluation of the parameters of the critical point

    TVT, 13:5 (1975),  1072–1080
  64. Flight speed of a plate propelled by products from a sliding detonation

    Fizika Goreniya i Vzryva, 10:6 (1974),  877–884
  65. Action of shock waves on silicon dioxide. II. Quartz glass

    Fizika Goreniya i Vzryva, 10:4 (1974),  578–583
  66. Initiation of a detonation by a shock wave in water-filled granulated trotyl

    Fizika Goreniya i Vzryva, 10:4 (1974),  561–568
  67. The effect of shock waves on silicon dioxide. I. Quartz

    Fizika Goreniya i Vzryva, 10:3 (1974),  426–436
  68. Collapse of thin-walled tubes under explosive loading

    Fizika Goreniya i Vzryva, 10:2 (1974),  277–284
  69. Elastic coefficients of aluminum as functions of the degree of compression in a shock wave

    Prikl. Mekh. Tekh. Fiz., 15:5 (1974),  94–100
  70. Об "аномальных" эффектах при выходе детонационной волны на свободную поверхность

    TVT, 12:5 (1974),  957–963
  71. Electric signals appearing in the compression of metals by a blast wave

    Dokl. Akad. Nauk SSSR, 211:6 (1973),  1314–1316
  72. Investigation of the possibility of using a thermistor to measure the temperature of shock-compressed solids

    Fizika Goreniya i Vzryva, 9:6 (1973),  893–898
  73. Determination of the temperature of shock-compressed copper from measurements of the parameters in the unloading wave

    Fizika Goreniya i Vzryva, 9:5 (1973),  743–745
  74. Transformation of meteoritic material in experiments with shock compression at pressures of 500 and 1000 kbar produced by explosions

    Fizika Goreniya i Vzryva, 9:4 (1973),  535–541
  75. Structure of shock and rarefaction waves in iron

    Fizika Goreniya i Vzryva, 9:3 (1973),  437–443
  76. Stability of “low-velocity detonation” in powdered solid explosives

    Fizika Goreniya i Vzryva, 9:3 (1973),  424–428
  77. Study of the process of initiation of detonation of explosives by shock waves using the method of electrical conductivity

    Fizika Goreniya i Vzryva, 9:3 (1973),  420–424
  78. Decomposition of porous explosives under the effect of shock waves

    Fizika Goreniya i Vzryva, 9:2 (1973),  295–304
  79. Dependence of the electrical conductivity of shock-compressed air on the piston material

    Fizika Goreniya i Vzryva, 8:4 (1972),  490–501
  80. Detonation characteristics of RDX-filler systems

    Fizika Goreniya i Vzryva, 8:4 (1972),  463–470
  81. Study of cleavage in shock-compressed aluminum powders

    Fizika Goreniya i Vzryva, 8:2 (1972),  283–290
  82. Changes in the electrical conductivity of shock-initiated explosives

    Fizika Goreniya i Vzryva, 8:1 (1972),  150–152
  83. Pressure dependence of the electrical resistance of shock-compressed CuNiMn 3-12 manganin and CuNiMn 40-1.5 constantan

    Fizika Goreniya i Vzryva, 8:1 (1972),  147–149
  84. Experimental investigation of the pressure profiles associated with the irregular reflection of a conical shock in plexiglas cylinders

    Fizika Goreniya i Vzryva, 8:1 (1972),  104–109
  85. Phase transitions of shock-compressed Т–Nb$_2$O$_5$ and Н–Nb$_2$O$_5$

    Fizika Goreniya i Vzryva, 7:4 (1971),  589–594
  86. Structure of the nonideal detonation front in solid explosives

    Fizika Goreniya i Vzryva, 7:3 (1971),  427–428
  87. Influence of dynamic pressure on oxides of elements of subgroup IVB

    Fizika Goreniya i Vzryva, 7:2 (1971),  272–275
  88. Possibility of the occurrence of diffusion processes in solids during shock compression

    Fizika Goreniya i Vzryva, 7:2 (1971),  264–266
  89. Calculation of the process of detonation initiation in liquid explosives by a shock wave with a decaying profile

    Fizika Goreniya i Vzryva, 7:1 (1971),  117–121
  90. Shock-initiated detonation of bulk-density charges

    Fizika Goreniya i Vzryva, 7:1 (1971),  103–111
  91. Shock-wave splitting in porous KBr

    Fizika Goreniya i Vzryva, 6:4 (1970),  529–532
  92. Shock compressibility and temperature of certain explosives in the porous state

    Fizika Goreniya i Vzryva, 6:4 (1970),  520–529
  93. The elastic wave in a thin-walled vessel and its role in relation to the low-velocity detonation regime

    Fizika Goreniya i Vzryva, 6:3 (1970),  342–351
  94. Refraction of oblique shock wave front at boundary with less rigid medium

    Prikl. Mekh. Tekh. Fiz., 11:3 (1970),  140–144
  95. The destruction of colour centres in $\mathrm{NaCl}$-monocrystals in the shock compression process

    Dokl. Akad. Nauk SSSR, 189:5 (1969),  991–992
  96. Polymerization of acrylamide as a function of the shock compression amplitude effect of reflected shocks

    Fizika Goreniya i Vzryva, 5:4 (1969),  583–585
  97. Shock-compression polymerization of hard-to-polymerize organic compounds

    Fizika Goreniya i Vzryva, 5:4 (1969),  528–539
  98. Shock compressibility of NB powder in the porous and nonporous states

    Fizika Goreniya i Vzryva, 5:4 (1969),  499–505
  99. Detonation of porous explosives

    Fizika Goreniya i Vzryva, 5:3 (1969),  338–347
  100. Nature of the critical detonation diameter of condensed explosives

    Fizika Goreniya i Vzryva, 5:3 (1969),  304–311
  101. Structure of the detonation front in condensed explosives

    Fizika Goreniya i Vzryva, 5:3 (1969),  291–304
  102. Mach reflection parameters for plexiglas cylinders

    Prikl. Mekh. Tekh. Fiz., 10:2 (1969),  126–128
  103. The effects of high static and dynamic pressures on aluminium nitride

    Dokl. Akad. Nauk SSSR, 182:2 (1968),  301–303
  104. Disintegration of solid explosives in a shock wave

    Fizika Goreniya i Vzryva, 4:3 (1968),  400–407
  105. Anomalous shock compressibility of porous materials

    Fizika Goreniya i Vzryva, 4:2 (1968),  244–253
  106. Dynamic compresibility of carbon

    Fizika Goreniya i Vzryva, 4:1 (1968),  112–115
  107. Some problems of the polarization of dielectrics in shock waves

    Prikl. Mekh. Tekh. Fiz., 9:5 (1968),  53–57
  108. Processes Occurring in Solids Under the Action of Powerful Shock Waves

    Usp. Khim., 37:5 (1968),  898–915
  109. The detonation mechanism in porous explosives

    Fizika Goreniya i Vzryva, 3:4 (1967),  471–484
  110. Electrical conductivity of shock-compressed monomers

    Fizika Goreniya i Vzryva, 3:3 (1967),  412–416
  111. Determination of the shock wave parameters in materials preserved in cylindrical bombs

    Fizika Goreniya i Vzryva, 3:2 (1967),  281–285
  112. Study of the propagation and interaction of triple shock configurations in a liquid explosive

    Fizika Goreniya i Vzryva, 3:2 (1967),  188–196
  113. Some methods of preserving shock-compressed samples

    Fizika Goreniya i Vzryva, 3:1 (1967),  143–146
  114. Shock initiation of detonation in nitroglycerin

    Fizika Goreniya i Vzryva, 3:1 (1967),  11–18
  115. Applicability of hydrodynamic theory to the detonation of condensed explosives

    Fizika Goreniya i Vzryva, 3:1 (1967),  3–10
  116. Preservation of inorganic substances compressed by shock waves

    Fizika Goreniya i Vzryva, 2:4 (1966),  130–135
  117. Limiting conditions of stable propagation of detonation with a one-dimensional zone in liquid explosives

    Fizika Goreniya i Vzryva, 2:4 (1966),  75–84
  118. Basis of the selection rule for detonation velocity

    Fizika Goreniya i Vzryva, 2:3 (1966),  19–30
  119. Polymerization mechanism in the shock compression of monomers

    Fizika Goreniya i Vzryva, 2:2 (1966),  95–100
  120. Stability of the detonation front in liquid explosives

    Fizika Goreniya i Vzryva, 2:1 (1966),  36–46
  121. Polymerization of condensed monomeres in a shock wave

    Dokl. Akad. Nauk SSSR, 165:4 (1965),  851–854
  122. Структура ударных волн в KCl и KBr при динамическом сжатии до 200 тыс. атм

    Fizika Goreniya i Vzryva, 1:4 (1965),  3–9
  123. Исследование времени реакции при детонации жидких ВВ электромагнитным методом

    Fizika Goreniya i Vzryva, 1:3 (1965),  93–98
  124. Об определении параметров детонации конденсированных ВВ

    Fizika Goreniya i Vzryva, 1:3 (1965),  3–9
  125. Об аналогии детонации газообразных и жидких взрывчатых веществ

    Fizika Goreniya i Vzryva, 1:2 (1965),  93–100
  126. Исследование инициирования детонации в нитрометане ударной волной

    Fizika Goreniya i Vzryva, 1:2 (1965),  3–11
  127. Emission spectrum of a detonation wave in nitromethane

    Prikl. Mekh. Tekh. Fiz., 6:1 (1965),  103–105
  128. О поведении некоторых веществ при ударном сжатии

    Prikl. Mekh. Tekh. Fiz., 5:6 (1964),  115–119
  129. Оптические свойства нитрометана, сжатого ударной волной

    Prikl. Mekh. Tekh. Fiz., 5:6 (1964),  112–114
  130. Определение давления Чепмена–Жуге и времени реакции в детонационной волне мощных ВВ

    Prikl. Mekh. Tekh. Fiz., 5:2 (1964),  154–159
  131. Расчет критических диаметров детонации жидких взрывчатых веществ

    Prikl. Mekh. Tekh. Fiz., 5:1 (1964),  126–131
  132. Инициирование детонации ударной волной в литом тротиле

    Prikl. Mekh. Tekh. Fiz., 4:6 (1963),  131–134
  133. Исследование гладкости фронта детонационной волны

    Prikl. Mekh. Tekh. Fiz., 4:4 (1963),  101–103
  134. О механизме детонации жидких взрывчатых веществ

    Prikl. Mekh. Tekh. Fiz., 4:1 (1963),  130–132
  135. The critical diameter for the detonation of liquid explosives

    Dokl. Akad. Nauk SSSR, 147:4 (1962),  870–873
  136. Ударное сжатие кварца

    Prikl. Mekh. Tekh. Fiz., 3:4 (1962),  81–89
  137. Detonation of nitromethane-metone mixtures

    Dokl. Akad. Nauk SSSR, 139:1 (1961),  137–138
  138. Detonation of nitromethane near the limit

    Dokl. Akad. Nauk SSSR, 133:6 (1960),  1372–1374
  139. Метод определения ударных адиабат дисперсных веществ

    Prikl. Mekh. Tekh. Fiz., 1:3 (1960),  184–188


© Steklov Math. Inst. of RAS, 2026