RUS  ENG
Full version
PEOPLE

Khvostikov Vladimir Petrovich

Publications in Math-Net.Ru

  1. Resonant reflection of light from a periodic system of quasi-two-dimensional layers of Bi nanoparticles in GaAs

    Fizika Tverdogo Tela, 67:11 (2025),  2203–2207
  2. Features of testing the characteristics of micro-sized photovoltaic converters of laser radiation

    Fizika i Tekhnika Poluprovodnikov, 59:4 (2025),  205–208
  3. Shingled photovoltaic converters based on GaSb

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:14 (2025),  15–19
  4. Micro-dimensional GaSb photovoltaic converters of high-power density laser radiation

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:4 (2025),  50–53
  5. Photovoltaic laser power converter based on germanium

    Zhurnal Tekhnicheskoi Fiziki, 94:5 (2024),  801–807
  6. Electrochemical deposition of contact materials for GaSb-based high-power photovoltaic converters

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:22 (2024),  7–10
  7. Contact systems for photovoltaic converters based on InGaAsP/InP

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:5 (2024),  28–31
  8. Numerical modelling of aluminum distribution profiles in the Al–Ga–As–Sn epitaxial layer

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:1 (2024),  36–38
  9. Gradient layers in a four-component Al–Ga–As–Sn system growth by liquid-phase epitaxy

    Zhurnal Tekhnicheskoi Fiziki, 93:10 (2023),  1476–1480
  10. Front contact to the GaSb-photovoltaic converter: Properties and thermal stability

    Fizika i Tekhnika Poluprovodnikov, 57:1 (2023),  35–41
  11. Obtaining anisotypic heterostructures for a GaSb-based photovoltaic converter due to solid-phase substitution reactions

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:21 (2022),  3–5
  12. InGaAsP/InP photovoltaic converters for narrowband radiation

    Fizika i Tekhnika Poluprovodnikov, 55:11 (2021),  1091–1094
  13. GaSb-based thermophotovoltaic converters of IR selective emitter radiation

    Fizika i Tekhnika Poluprovodnikov, 55:10 (2021),  956–959
  14. An investigation of the influence of secondary optical elements on the output parameters of photovoltaic modules

    Zhurnal Tekhnicheskoi Fiziki, 90:12 (2020),  2118–2122
  15. Laser power converter modules with a wavelength of 809–850 nm

    Zhurnal Tekhnicheskoi Fiziki, 90:10 (2020),  1764–1768
  16. Module of laser-radiation ($\lambda$ = 1064 nm) photovoltaic converters

    Fizika i Tekhnika Poluprovodnikov, 53:8 (2019),  1135–1139
  17. Tritium power supply sources based on AlGaAs/GaAs heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:23 (2019),  30–33
  18. A study of ohmic contacts of power photovoltaic converters

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:1 (2019),  12–15
  19. AlGaAs/GaAs photovoltaic converters of tritium radioluminescent-lamp radiation

    Fizika i Tekhnika Poluprovodnikov, 52:13 (2018),  1647–1650
  20. GaInAsP/InP-based laser power converters ($\lambda$ = 1064 nm)

    Fizika i Tekhnika Poluprovodnikov, 52:13 (2018),  1641–1646
  21. Modification of photovoltaic laser-power ($\lambda$ = 808 nm) converters grown by LPE

    Fizika i Tekhnika Poluprovodnikov, 52:3 (2018),  385–389
  22. Photovoltaic laser-power converters based on LPE-grown InP(GaAs)/InP heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:18 (2018),  31–38
  23. High-efficiency AlGaAs/GaAs photovoltaic converters with edge input of laser light

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:17 (2018),  42–48
  24. Laser ($\lambda$ = 809 nm) power converter based on GaAs

    Fizika i Tekhnika Poluprovodnikov, 51:5 (2017),  676–679
  25. GaSb laser-power ($\lambda$ = 1550 nm) converters: Fabrication method and characteristics

    Fizika i Tekhnika Poluprovodnikov, 50:10 (2016),  1358–1362
  26. Photovoltaic laser-power converter based on AlGaAs/GaAs heterostructures

    Fizika i Tekhnika Poluprovodnikov, 50:9 (2016),  1242–1246
  27. Simulation of the characteristics of InGaAs/InP-based photovoltaic laser-power converters

    Fizika i Tekhnika Poluprovodnikov, 50:1 (2016),  132–137
  28. Simulation of the ohmic loss in photovoltaic laser-power converters for wavelengths of 809 and 1064 nm

    Fizika i Tekhnika Poluprovodnikov, 50:1 (2016),  125–131
  29. GaSb-based photovoltaic laser-power converter for the wavelength $\lambda\approx$ 1550 nm

    Fizika i Tekhnika Poluprovodnikov, 49:8 (2015),  1104–1107
  30. Photovoltaic converters of concentrated sunlight, based on InGaAsP(1.0 eV)/InP heterostructures

    Fizika i Tekhnika Poluprovodnikov, 49:5 (2015),  715–718
  31. Temperature stability of contact systems for GaSb-based photovoltaic converters

    Fizika i Tekhnika Poluprovodnikov, 48:9 (2014),  1280–1286
  32. Spectral-splitting concentrator photovoltaic modules based on AlGaAs/GaAs/GaSb and GaInP/InGaAs(P) solar cells

    Zhurnal Tekhnicheskoi Fiziki, 83:7 (2013),  106–110
  33. High-efficiency GaSb photocells

    Fizika i Tekhnika Poluprovodnikov, 47:2 (2013),  273–279
  34. Obtaining nanodimensional layers of GaAsP solid solutions on GaAs by solid-state substitution reactions

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 39:10 (2013),  49–53
  35. A decrease in ohmic losses and an increase in power in GaSb photovoltaic converters

    Fizika i Tekhnika Poluprovodnikov, 45:9 (2011),  1266–1273
  36. High-efficiency ($\eta$ = 39.6%, AM 1.5D) cascade of photoconverters in solar splitting systems

    Fizika i Tekhnika Poluprovodnikov, 45:6 (2011),  810–815
  37. Gas-fired thermophotovoltaic generator based on metallic emitters and GaSb cells

    Fizika i Tekhnika Poluprovodnikov, 44:9 (2010),  1284–1289
  38. Thermophotovoltaic generators based on gallium antimonide

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  270–277
  39. Generating broadband random Gaussian signals

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:15 (2010),  102–110
  40. Band overgrown AlGaAs heterolasers produced by liquid-phase epitaxy in single-stage process

    Fizika i Tekhnika Poluprovodnikov, 26:9 (1992),  1666–1668
  41. Phonon-plasmon modes in raman spectra of $n$-Al$_{x}$Ga$_{1-x}$As epitaxial layers

    Fizika i Tekhnika Poluprovodnikov, 26:4 (1992),  614–628
  42. LOW-THRESHOLD (IN=2.0MA, 300-K) HIGH-PERFORMANCE (ETA-EXT=68-PERCENT) ALGAAS-HETEROLASERS OBTAINED BY LOW-TEMPERATURE LIQUID-PHASE EPITAXY TECHNIQUE

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 17:5 (1991),  1–5
  43. Низкопороговые квантово-размерные AlGaAs-гетеролазеры для диапазона длин волн 730$-$850 нм, полученные методом низкотемпературной ЖФЭ

    Fizika i Tekhnika Poluprovodnikov, 24:10 (1990),  1757–1761
  44. Комбинационное рассеяние света на смешанных $LO$-фонон-плазмонных колебаниях в двухмодовых твердых растворах $n$-Al$_{x}$Ga$_{1-x}$As ($x>0.4$)

    Fizika i Tekhnika Poluprovodnikov, 24:9 (1990),  1539–1549
  45. PHOTOTRANSDUCERS BASED ON ALGAAS-GAAS HETEROSTRUCTURES FOR SCINTILLATION DETECTORS OF IONIZING-RADIATIONS

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 16:19 (1990),  56–59
  46. INJECTION LASER-FIELD-EFFECT TRANSISTOR FAST-RESPONSE OPTOELECTRON INTEGRAL DIAGRAM BASED ON ALGAAS/GAAS HETEROSTRUCTURE

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 16:14 (1990),  70–74
  47. STUDY OF COMPOSITION DISTRIBUTION IN ALGAAS HETEROSTRUCTURES WITH QUANTUM-DIMENSIONAL LAYERS BY THE RAMAN-SCATTERING TECHNIQUE

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 16:9 (1990),  7–12
  48. Фотоэлектрические свойства AlGaAs$-$GaAs-гетероструктур с туннельно-тонким «широкозонным окном»

    Fizika i Tekhnika Poluprovodnikov, 23:4 (1989),  597–600
  49. SEMICONDUCTING LASER WITH THE BUILT-IN EXCITON STARK QUALITY MODULATOR BASED ON ALGAAS DHS WITH SINGLE QUANTUM WELL GAAS

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 15:7 (1989),  20–24
  50. Квантово-размерные низкопороговые AlGaAs-гетеролазеры, полученные методом низкотемпературной жидкофазной эпитаксии

    Fizika i Tekhnika Poluprovodnikov, 22:10 (1988),  1775–1779
  51. MULTIDIMENSIONAL STRIP AL-GA-AS-HETEROLASERS OF A MILLIAMPERIC RANGE OF CURRENTS (IN=2.1-MA, T=300-K), OBTAINED BY METHODS OF LOW-TEMPERATURE LIQUID-PHASE EPITAXY

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:22 (1988),  2057–2060
  52. ELECTRICAL ABSORPTION UNDER THE WAVE-GUIDE LIGHT TRANSITION THROUGH THE DOUBLE ALGAAS HETEROSTRUCTURE WITH QUANTUM-DIMENSIONAL LAYERS

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:17 (1988),  1548–1552
  53. LOW-THRESHOLD (IN=6.2-MA, T=300-K) BAND QUANTUM DIMENSIONAL ALGAAS-HETEROLASERS CREATED BY THE LOW-TEMPERATURE LPE METHOD

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:17 (1988),  1537–1540
  54. HETEROSTRUCTURES WITH TUNNEL THIN (20-50-A) SURFACE ALGAAS-LAYERS OBTAINED BY THE LPE METHOD

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:15 (1988),  1429–1433
  55. LIQUID-PHASE ALGAAS-STRUCTURES WITH QUANTUM-DIMENTIONAL LAYERS OF THE APPROXIMATELY-20A WIDTH

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:2 (1988),  171–176
  56. Photoluminescence of Quantum-Dimensional Layers in AlGaAs-Heterostructures Produced by the Method of Low-Temperature Liquid-Phase Epitaxy

    Fizika i Tekhnika Poluprovodnikov, 21:7 (1987),  1212–1216
  57. $Al\,Ga\,As$-heterostructures with quantum-dimensional layers, obtained by low-temperature liquid-phase epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 12:18 (1986),  1089–1093


© Steklov Math. Inst. of RAS, 2026