RUS  ENG
Full version
PEOPLE

Larionov Valerii Romanovich

Publications in Math-Net.Ru

  1. Metamorphic InGaAs/GaAs heterostructures for radiation-resistant laser power converters

    Fizika i Tekhnika Poluprovodnikov, 59:5 (2025),  291–293
  2. Study of lifetimes of nonequilibrium charge carriers by electroluminescence method in multijunction solar cells under irradiation with high-energy protons and electrons

    Fizika i Tekhnika Poluprovodnikov, 59:4 (2025),  214–218
  3. Investigation of power IR (850 nm) light-emitting diodes manufacturing by lift-off technique of AlGaAs–GaAs-heterostructure to carrier-substrate

    Zhurnal Tekhnicheskoi Fiziki, 93:1 (2023),  170–174
  4. Method for controlling the ratio of the direct and diffuse components of solar radiation when measuring photovoltaic characteristics of a hybrid module

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:23 (2023),  69–72
  5. Hybrid photovoltaic modules: comparison of lab and field research

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:23 (2023),  56–58
  6. Hybrid concentrator-planar photovoltaic module with heterostructure solar cells

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:4 (2023),  15–19
  7. Photo-receiving device for conversion of energy and data transmitted via atmospheric laser channel

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:19 (2022),  3–7
  8. High efficiency (EQE = 37.5%) infrared (850 nm) light-emitting diodes with Bragg and mirror reflectors

    Fizika i Tekhnika Poluprovodnikov, 55:12 (2021),  1218–1222
  9. An investigation of the influence of secondary optical elements on the output parameters of photovoltaic modules

    Zhurnal Tekhnicheskoi Fiziki, 90:12 (2020),  2118–2122
  10. Control system of Sun-tracking accuracy for concentration photovoltaic installations

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:11 (2020),  11–13
  11. High-efficiency conversion of high-power-density laser radiation

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:2 (2019),  26–28
  12. Measuring complex for studying cascade solar photovoltaic cells and concentrator modules on their basis

    Zhurnal Tekhnicheskoi Fiziki, 85:6 (2015),  104–110
  13. Band overgrown AlGaAs heterolasers produced by liquid-phase epitaxy in single-stage process

    Fizika i Tekhnika Poluprovodnikov, 26:9 (1992),  1666–1668
  14. LOW-THRESHOLD (IN=2.0MA, 300-K) HIGH-PERFORMANCE (ETA-EXT=68-PERCENT) ALGAAS-HETEROLASERS OBTAINED BY LOW-TEMPERATURE LIQUID-PHASE EPITAXY TECHNIQUE

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 17:5 (1991),  1–5
  15. PHOTOTRANSDUCERS BASED ON ALGAAS-GAAS HETEROSTRUCTURES FOR SCINTILLATION DETECTORS OF IONIZING-RADIATIONS

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 16:19 (1990),  56–59
  16. STUDY OF COMPOSITION DISTRIBUTION IN ALGAAS HETEROSTRUCTURES WITH QUANTUM-DIMENSIONAL LAYERS BY THE RAMAN-SCATTERING TECHNIQUE

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 16:9 (1990),  7–12
  17. Фотоэлектрические свойства AlGaAs$-$GaAs-гетероструктур с туннельно-тонким «широкозонным окном»

    Fizika i Tekhnika Poluprovodnikov, 23:4 (1989),  597–600
  18. FAST-RESPONSE P-1-N GAAS/ALGAAS PHOTODETECTOR OPERATING AT A RECTIFYING REGIME

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 15:9 (1989),  88–93
  19. ORIENTATION EFFECTS UNDER LIQUID-PHASE EPITAXY OF ALGAAS STRUCTURES

    Zhurnal Tekhnicheskoi Fiziki, 58:9 (1988),  1789–1792
  20. Квантово-размерные низкопороговые AlGaAs-гетеролазеры, полученные методом низкотемпературной жидкофазной эпитаксии

    Fizika i Tekhnika Poluprovodnikov, 22:10 (1988),  1775–1779
  21. ELECTRICAL ABSORPTION UNDER THE WAVE-GUIDE LIGHT TRANSITION THROUGH THE DOUBLE ALGAAS HETEROSTRUCTURE WITH QUANTUM-DIMENSIONAL LAYERS

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:17 (1988),  1548–1552
  22. LOW-THRESHOLD (IN=6.2-MA, T=300-K) BAND QUANTUM DIMENSIONAL ALGAAS-HETEROLASERS CREATED BY THE LOW-TEMPERATURE LPE METHOD

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:17 (1988),  1537–1540
  23. HETEROSTRUCTURES WITH TUNNEL THIN (20-50-A) SURFACE ALGAAS-LAYERS OBTAINED BY THE LPE METHOD

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:15 (1988),  1429–1433
  24. THIN-FILM MULTITRANSIT ALGAAS-PHOTOELEMENTS WITH 2-SIDED PHOTOSENSITIVITY

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:3 (1988),  193–197
  25. LIQUID-PHASE ALGAAS-STRUCTURES WITH QUANTUM-DIMENTIONAL LAYERS OF THE APPROXIMATELY-20A WIDTH

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:2 (1988),  171–176
  26. INJECTION ANNEALING OF DEFECTS OF ALGAAS-STRUCTURES OF SOLAR ELEMENTS DURING EXPOSURE TO RADIATION

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:2 (1988),  121–125
  27. VILET PALGAAS-PGAAS-NGAAS-PHOTOELEMENTS WITH SUPERTHIN (30-300 A) WIDE-ZONE LAYERS

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:1 (1988),  76–79
  28. Integral-Optical Saturable Absorber Based on the Franz–Keldysh Effect

    Fizika i Tekhnika Poluprovodnikov, 21:5 (1987),  900–903
  29. Narrow-strip spectral photosensitivity during light electric absorption in semiconductors

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:23 (1987),  1414–1416
  30. Photoflow oscillations under light electroabsorption in the barrier-layer cell

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:13 (1987),  811–816
  31. Low-Threshold (${j_{\text{п}}=230\,\text{А/см}^{2}}$, ${T=300}$ K) AlGaAs Double-Heterostructure Lasers with Separate Limitation Produced by the Method of Liquid Epitaxy

    Fizika i Tekhnika Poluprovodnikov, 20:2 (1986),  381–383
  32. $Al\,Ga\,As$-heterostructures with quantum-dimensional layers, obtained by low-temperature liquid-phase epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 12:18 (1986),  1089–1093
  33. Cascade Si$-$AlGaAs Solar Photocells

    Fizika i Tekhnika Poluprovodnikov, 18:1 (1984),  121–125
  34. ELECTROLUMINESCENT INVESTIGATIONS OF SOLAR PALGAAS-PGAAS-NGAAS HETEROPHOTOELEMENTS WITH DISTRIBUTED PARAMETERS

    Zhurnal Tekhnicheskoi Fiziki, 53:2 (1983),  329–332
  35. Высокоэффективные $p$AlGaAs${-}p$GaAs${-}n$GaAs солнечные фотоэлементы с КПД 19% (AM 0) и 24% (AM 1.5)

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 9:20 (1983),  1251–1254
  36. Концентраторные фотоэлектрические батареи на основе AlGaAs$-$GaAs солнечных элементов

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 9:2 (1983),  102–104


© Steklov Math. Inst. of RAS, 2026