RUS  ENG
Full version
PEOPLE

Matveev Boris Anatol'evich

Publications in Math-Net.Ru

  1. Радиационная стойкость датчиков МНПВО на основе двойных гетероструктур $p$-InAsSbP/$n$-InAs, облученных гамма-квантами

    Zhurnal Tekhnicheskoi Fiziki, 96:1 (2026),  112–121
  2. High operating temperature photodiodes based on $n$-InAsSbP/InAs/$p$-InAsSbP heterostructures

    Fizika i Tekhnika Poluprovodnikov, 59:6 (2025),  332–336
  3. Longwave ($\lambda_{0.1}$ = 10 $\mu$m, 296 K) infrared photodetectors based on InAsSb$_{0.38}$ solid solution

    Optics and Spectroscopy, 131:11 (2023),  1505–1508
  4. Thermal resistance of LEDs based on a narrow-gap InAsSb solid solution

    Optics and Spectroscopy, 131:11 (2023),  1502–1504
  5. Spatial electroluminescence distribution and internal quantum efficiency in substrate free InAsSbP/InAsSb double heterostructure

    Fizika i Tekhnika Poluprovodnikov, 57:6 (2023),  501–506
  6. On heating mechanisms in LEDs based on $p$-InAsSbP/$n$-InAs(Sb)

    Fizika i Tekhnika Poluprovodnikov, 57:1 (2023),  42–52
  7. Low frequency noise and resistance in non-passivated InAsSbP/InAs based photodiodes in the presence of atmosphere with ethanol vapor

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:11 (2023),  19–24
  8. On-chip ATR sensor ($\lambda$ = 3.4 $\mu$m) based on InAsSbP/InAs double heterostructure for the determination of ethanol concentration in aqueous solutions

    Optics and Spectroscopy, 130:8 (2022),  1223–1228
  9. Photonic and electrical output signal components in optical sensors based on $p$-InAsSbP/$n$-InAs(Sb) monolithic heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:23 (2022),  42–46
  10. On the use of indium arsenide as the waveguide material in the measurements by attenuated total reflectance

    Optics and Spectroscopy, 129:9 (2021),  1193–1197
  11. Localization of current flow in thermophotovoltaic converters based on InAsSbP/InAs double heterostructures

    Zhurnal Tekhnicheskoi Fiziki, 90:5 (2020),  835–840
  12. Comparative characteristic analysis of thermophotovoltaic $p$-InAsSbP/$n$-InAs converters irradiated on $p$- and $n$-sides

    Zhurnal Tekhnicheskoi Fiziki, 89:8 (2019),  1233–1237
  13. Mid-IR leds based on A$^{3}$B$^{5}$ heterostructures for gas analyzers. Capabilities and applications 2014–2018

    Optics and Spectroscopy, 127:2 (2019),  300–305
  14. Indium arsenide-based spontaneous emission sources (review: a decade later)

    Fizika i Tekhnika Poluprovodnikov, 53:2 (2019),  147–157
  15. InAsSb diode optical pairs for real-time carbon dioxide sensors

    Zhurnal Tekhnicheskoi Fiziki, 88:9 (2018),  1433–1438
  16. InAsSbP photodiodes for 2.6–2.8-$\mu$m wavelengths

    Zhurnal Tekhnicheskoi Fiziki, 88:2 (2018),  234–237
  17. Spatial redistribution of radiation in flip-chip photodiodes based on InAsSbP/InAs double heterostructures

    Fizika i Tekhnika Poluprovodnikov, 51:2 (2017),  269–275
  18. Photodiode 1 $\times$ 64 linear array based on a double $p$-InAsSbP/$n$-InAs$_{0.92}$Sb$_{0.08}$/$n^{+}$-InAs heterostructure

    Fizika i Tekhnika Poluprovodnikov, 50:5 (2016),  657–662
  19. Current-voltage characteristics and photocurrent collection in radially symmetric front-surface-illuminated InAsSb(P) photodiodes

    Zhurnal Tekhnicheskoi Fiziki, 84:11 (2014),  52–57
  20. $P$-InAsSbP/$n^0$-InAs/$n^+$-InAs photodiodes for operation at moderate cooling (150–220 K)

    Fizika i Tekhnika Poluprovodnikov, 48:10 (2014),  1394–1397
  21. Photonic crystals and Bragg gratings for the mid-IR and terahertz spectral ranges

    Fizika i Tekhnika Poluprovodnikov, 47:12 (2013),  1595–1598
  22. Cooled photodiodes based on a type-II single $p$-InAsSbP/$n$-InAs heterostructure

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 39:18 (2013),  45–52
  23. Front surface illuminated InAsSb photodiodes (long-wavelength cutoff $\lambda_{0.1}$ = 4.5 $\mu$m) operating at temperatures of 25–80$^\circ$C

    Fizika i Tekhnika Poluprovodnikov, 46:5 (2012),  708–713
  24. Nonuniformity in the spatial distribution of negative luminescence in InAsSb(P) photodiodes (long-wavelength cutoff $\lambda_{0.1}$ = 5.2 $\mu$m)

    Fizika i Tekhnika Poluprovodnikov, 46:2 (2012),  258–261
  25. Uncooled photodiodes based on InAsSb(P) with long-wavelength cut-off at $\lambda$ = 5.8 $\mu$m

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:5 (2012),  85–90
  26. Spatial nonuniformity of current flow and its consideration in determination of characteristics of surface illuminated InAsSbP/InAs-based photodiodes

    Fizika i Tekhnika Poluprovodnikov, 45:4 (2011),  554–559
  27. Limiting sensitivity of photodetectors based on A$^3$B$^5$ photodiodes for middle infrared range

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 37:18 (2011),  50–57
  28. Nature of threshold current-density temperature dependence for long-wavelenght lasers based on InAsSbP/InAs and InAsSbP/InAsSb double heterostructures

    Fizika i Tekhnika Poluprovodnikov, 26:2 (1992),  246–256
  29. Поляризация фотолюминесценции с поверхности гетероструктуры A$^{\text{III}}$B$^{\text{V}}$ с профилированной подложкой

    Fizika i Tekhnika Poluprovodnikov, 25:1 (1991),  12–16
  30. INASSBP-BASED LIGHT DIODES USED IN SMALL-SCALE ANALYZERS OF CARBON OXIDE

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 17:23 (1991),  75–79
  31. Structural perfection of $\mathrm{InAs}_{1-x-y}\mathrm{Sb}_{x}\mathrm{P}_{y}$–$\mathrm{InAs}$ double heterostructures

    Fizika Tverdogo Tela, 32:11 (1990),  3355–3361
  32. ABSORPTION-EDGE OF VARISON EPITAXIAL LAYERS OF INAS1-XSBX WHERE (X-LESS-THAN-0,54)

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 16:4 (1990),  76–80
  33. LOW-THRESHOLD LASERS OF 3-3,5 MU-M BASED ON DHS INASSBP/IN1-XGAXAS1-YSBY

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 15:15 (1989),  49–52
  34. Катодолюминесценция градиентных эпитаксиальных структур InAsSbP/InAs

    Fizika i Tekhnika Poluprovodnikov, 22:7 (1988),  1244–1247
  35. A PROFILE OF THE DEFORMATION IN GRADIENT STRUCTURES OF INAS1-X-YSBXY/INAS

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:22 (1988),  2044–2048
  36. STIMULATED EMISSION (3-3.3 MU-M, 77-K) UNDER THE CURRENT INJECTION IN PLASTICALLY DEFORMED DHS INASSBP/INAS LASERS

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:17 (1988),  1617–1621
  37. REDISTRIBUTION OF AFTER-PRESSURE DURING SUBLAYER PROFILING IN INGASBAS/GASB STRUCTURES

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:3 (1988),  247–250
  38. MANIFESTATION OF BOUNDARY DISTORTIONS ON X-RAY TOPOGRAMS OF GAASSBP-GAAS CURVED STRUCTURES

    Zhurnal Tekhnicheskoi Fiziki, 57:10 (1987),  2000–2004
  39. Photoluminescence of Plastically Deformed $p$-Type GaSb

    Fizika i Tekhnika Poluprovodnikov, 21:10 (1987),  1914–1915
  40. Luminescent Properties of Epitaxial Layers and $p{-}n$ Structures Based on In$_{1-x}$Ga$_{x}$As (${0 < x < 0.23}$)

    Fizika i Tekhnika Poluprovodnikov, 21:6 (1987),  1079–1084
  41. Injection coherent emission in $In\,As\,Sb\,P/In\,As/In\,As\,Sb\,P$

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:9 (1987),  563–565
  42. Temperature-dependence of parameters of stimulated radiation in R-P structures based on $In\,As_{1-x}\,Sb_{x}$

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:6 (1987),  329–331
  43. Dislocation distribution in bended $\mathrm{InAsSbP}/\mathrm{InAs}$ structures

    Fizika Tverdogo Tela, 28:3 (1986),  789–792
  44. Coherent irradiation of 3,9-mu-m in R-P structures based on $Jn\,As\,Sb\,P$

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 12:23 (1986),  1444–1447
  45. Peculiarities of Luminescence of Plastically Deformed InAsSbP/InAs Heterostructures

    Fizika i Tekhnika Poluprovodnikov, 19:11 (1985),  2031–2035
  46. Concave diffraction lattices on the monocrystal surface

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:19 (1985),  1172–1175
  47. Поляризация люминесценции эпитаксиальных слоев твердых растворов InAs$_{1-x-y}$Sb$_{x}$P$_{y}$

    Fizika i Tekhnika Poluprovodnikov, 18:10 (1984),  1795–1798
  48. X-RAY-DIFFRACTION ON THE PLASTIC DEFORMED EPITAXIAL HETEROSTRUCTURES

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 10:21 (1984),  1297–1301
  49. Длинноволновые неохлаждаемые светодиоды на основе твердых растворов InAs$_{1-x-y}$Sb$_{x}$P$_{y}$

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 9:7 (1983),  391–395


© Steklov Math. Inst. of RAS, 2026