RUS  ENG
Full version
PEOPLE

Dubrovskii Vladimir Germanovich

Publications in Math-Net.Ru

  1. Influence of heterostructure radius increment on the heterointerface of IIIV$_x$V$_{1-x}$ nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 52:3 (2026),  41–44
  2. Modeling the composition of Au-catalyzed InP$_x$As$_{1-x}$ and InSb$_x$As$_{1-x}$ nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 52:2 (2026),  47–50
  3. Influence of the surface energy on the composition and growth of In$_x$Ga$_{1-x}$As nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:2 (2024),  6–9
  4. Growth kinetics of III–V nanomembranes influenced by the re-emitted flux of group III species

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:13 (2023),  25–27
  5. Limiting factors for the growth rate of epitaxial III–V compound semiconductors

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:8 (2023),  39–41
  6. Modeling the growth of tapered nanowires on reflecting substrates

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:23 (2022),  14–17
  7. Criterion for the growth selectivity of III–V and III–N nanowires on masked substrates

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:22 (2022),  7–10
  8. Kinetics of radial growth of III–V nanowires in vapor phase epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:20 (2022),  35–38
  9. Modeling the compositional profiles across axial InSb/GaInSb/InSb nanowire heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:19 (2022),  20–23
  10. Synthesis of Au/Si nanostructures by STM lithography

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:12 (2022),  15–18
  11. Role of the shadowing effect in the growth kinetics of III–V nanowires by molecular beam epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:11 (2022),  12–15
  12. Asymptotic stage of self-catalyzed growth of III–V nanowires by molecular beam epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:3 (2022),  17–20
  13. Nanoisland shape variation during selective epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:14 (2021),  43–46
  14. Gallium diffusion flow direction during deposition on the surface with regular hole arrays

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:12 (2021),  27–30
  15. The dependence of the growth rate and structure of III–V nanowires on the adatom collection area on the substrate surface

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:9 (2021),  37–40
  16. MBE-grown In$_x$ Ga$_{1-x}$ As nanowires with 50% composition

    Fizika i Tekhnika Poluprovodnikov, 54:6 (2020),  542
  17. Growth kinetics of planar nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:20 (2020),  15–18
  18. Free energy of nucleus formation during growth of III–V semiconductor nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:18 (2020),  3–6
  19. Limits of III–V nanowire growth

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:17 (2020),  26–29
  20. Kinetics of nucleus growth from a nanophase

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:8 (2020),  3–6
  21. Effect of elastic stresses on the formation of axial heterojunctions in ternary A$^{\mathrm{III}}$B$^{\mathrm{V}}$ nanowires

    Fizika Tverdogo Tela, 61:12 (2019),  2437–2441
  22. Inhomogeneous dopant distribution in III–V nanowires

    Fizika i Tekhnika Poluprovodnikov, 51:11 (2017),  1480–1483
  23. Dispersion of scale-invariant size-distribution functions

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 43:9 (2017),  3–9
  24. On a new method of heterojunction formation in III–V nanowires

    Fizika i Tekhnika Poluprovodnikov, 50:12 (2016),  1592–1594
  25. Incubation time of heterogeneous growth of islands in the mode of incomplete condensation

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:22 (2016),  9–15
  26. The initial stage of autocatalytic growth of GaAs filamentary nanocrystals

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:15 (2016),  95–102
  27. The length distribution function of semiconductor filamentary nanocrystals

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:13 (2016),  44–50
  28. A model of axial heterostructure formation in III–V semiconductor nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:6 (2016),  104–110
  29. Model of selective growth of III–V nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 41:23 (2015),  49–53
  30. Self-consistent renormalization in the theory of binary nucleation in ternary solutions

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 41:18 (2015),  102–110
  31. Scale invariance of continuum size distribution upon irreversible growth of surface islands

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 41:11 (2015),  23–29
  32. Scaling size distribution functions of heterogeneous clusters in a linear capture coefficient model

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 41:5 (2015),  74–83
  33. The theory of nucleation and polytypism of III–V semiconductor nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 41:4 (2015),  102–110
  34. The initial stage of growth of self-induced GaN nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 40:11 (2014),  45–52
  35. Simulation of growth and shape of nanowires in the absence of a catalyst

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 40:9 (2014),  55–63
  36. Pólya distribution and its asymptotics in nucleation theory

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 40:4 (2014),  79–86
  37. Ultra-low density InAs quantum dots

    Fizika i Tekhnika Poluprovodnikov, 47:10 (2013),  1335–1338
  38. Lateral growth and shape of semiconductor nanowires

    Fizika i Tekhnika Poluprovodnikov, 47:1 (2013),  53–59
  39. Modeling InAs quantum-dot formation on the side surface of GaAs nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 39:23 (2013),  39–50
  40. Refinement of the Wagner–Ellis formula for the minimum radius and the Givargizov–Chernov formula for the growth rate of nanowire

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 39:3 (2013),  33–40
  41. Modeling GaN nanowire growth on silicon

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 39:2 (2013),  61–67
  42. Effect of diffusion from a lateral surface on the rate of gan nanowire growth

    Fizika i Tekhnika Poluprovodnikov, 46:6 (2012),  857–860
  43. Formation of (Ga,Mn)As nanowires and study of their magnetic properties

    Fizika i Tekhnika Poluprovodnikov, 46:2 (2012),  188–193
  44. Studying the formation of self-assembled (In,Mn)As quantum dots

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:10 (2012),  21–27
  45. Calculating GaAs semiconductor nanoneedle size distribution

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:8 (2012),  10–16
  46. Surface energy and modes of catalytic growth of semiconductor nanowhiskers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:7 (2012),  21–30
  47. Wetting regime of semiconductor nanowhisker growth: Stability and shape of catalyst droplet

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:5 (2012),  41–48
  48. Growth of semiconductor nanowires at large diffusion lengths

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:4 (2012),  18–25
  49. Self-consistent model of nanowire growth and crystal structure with regard to the adatom diffusion

    Zhurnal Tekhnicheskoi Fiziki, 81:2 (2011),  153–156
  50. Study of processes of self-catalyzed growth of gaas crystal nanowires by molecular-beam epitaxy on modified Si (111) surfaces

    Fizika i Tekhnika Poluprovodnikov, 45:4 (2011),  441–445
  51. Effect of the vicinal character of substrate on nucleation of nanoislands in lattice-mismatched systems

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 37:17 (2011),  18–25
  52. Numerical analysis of the effect of fluctuations on the growth of nuclei during first-order phase transitions

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 37:13 (2011),  14–23
  53. Surface energy of monolayer formation during nanowire growth by vapor-liquid-solid mechanism

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 37:9 (2011),  75–82
  54. Blurring of island size distribution function in theory of nucleation

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 37:6 (2011),  78–87
  55. Physical consequences of the equivalence of conditions for the steady-state growth of nanowires and the nucleation on triple phase line

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 37:2 (2011),  1–11
  56. The initial stage of growth of crystalline nanowhiskers

    Fizika i Tekhnika Poluprovodnikov, 44:1 (2010),  114–117
  57. Criterion for the onset of ostwald ripening stage with allowance for the particle number fluctuations in a nucleus

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:5 (2010),  53–61
  58. New microscopic models of clustering kinetics

    Prikl. Mekh. Tekh. Fiz., 31:1 (1990),  3–9


© Steklov Math. Inst. of RAS, 2026