RUS  ENG
Full version
PEOPLE

Andreev Vyacheslav Mikhailovich

Publications in Math-Net.Ru

  1. Влияние типа подложки-носителя на резистивные и оптические свойства AlGaAs/GaInAs светоизлучающих инфракрасных диодов

    Zhurnal Tekhnicheskoi Fiziki, 96:2 (2026),  330–335
  2. Increasing the efficiency of optical power input in AlGaAs/GaAs photovoltaic laser converters

    Fizika i Tekhnika Poluprovodnikov, 59:4 (2025),  209–213
  3. Design and efficiency correlation of IR light-emitting diodes based on quantum dimensional heterostructures AlGaAs

    Zhurnal Tekhnicheskoi Fiziki, 94:4 (2024),  632–637
  4. High-power subnanosecond module based on $p$$i$$n$ AlGaAs/GaAs photodiodes

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:19 (2024),  5–8
  5. Subnanosecond AlGaAs/GaAs photodetectors with Bragg reflectors

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:17 (2024),  38–41
  6. Degradation study of subnanosecond photovoltaic module parameters during thermocycling

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:6 (2024),  44–46
  7. Investigation of power IR (850 nm) light-emitting diodes manufacturing by lift-off technique of AlGaAs–GaAs-heterostructure to carrier-substrate

    Zhurnal Tekhnicheskoi Fiziki, 93:1 (2023),  170–174
  8. Mesa architecture and efficiency of InGaP/Ga(In)As/Ge solar cells

    Zhurnal Tekhnicheskoi Fiziki, 91:7 (2021),  1067–1074
  9. High-efficiency photovoltaic modules with solar concentrators

    Zhurnal Tekhnicheskoi Fiziki, 91:6 (2021),  915–921
  10. High efficiency (EQE = 37.5%) infrared (850 nm) light-emitting diodes with Bragg and mirror reflectors

    Fizika i Tekhnika Poluprovodnikov, 55:12 (2021),  1218–1222
  11. Infrared (850 nm) light-emitting diodes with multiple InGaAs quantum wells and “back” reflector

    Fizika i Tekhnika Poluprovodnikov, 55:8 (2021),  699–703
  12. Infrared (850 nm) light-emitting diodes with multiple InGaAs quantum wells and “back” reflector

    Fizika i Tekhnika Poluprovodnikov, 55:7 (2021),  614–617
  13. Dynamics of air humidity in a concentrator photovoltaic module with a drying device

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:4 (2021),  52–54
  14. Plasmachemical and wet etching in the postgrowth technology of solar cells based on the GaInP/GaInAs/Ge heterostructure

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:3 (2021),  14–17
  15. Development and study of the $p$$i$$n$-диодов GaAs/AlGaAs tunnel diodes for multijunction converters of high-power laser radiation

    Fizika i Tekhnika Poluprovodnikov, 54:3 (2020),  285–291
  16. Investigation of passivating and protecting methods for multijunction solar cells

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:19 (2020),  35–37
  17. High-efficiency photoelectric units with sunlight concentrators

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:13 (2020),  24–26
  18. Control system of Sun-tracking accuracy for concentration photovoltaic installations

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:11 (2020),  11–13
  19. Electroinsulated heat sinks for concentrated photovoltaic solar cells

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:9 (2020),  29–31
  20. Increasing the photocurrent of a Ga(In)As subcell in multijunction solar cells based on GaInP/Ga(In)As/Ge heterostructure

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:24 (2019),  41–43
  21. Development of methods for liquid etching of a separation mesa-structure in creating multijunction solar cells

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:24 (2019),  14–16
  22. Tritium power supply sources based on AlGaAs/GaAs heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:23 (2019),  30–33
  23. Studying the formation of antireflection coatings on multijunction solar cells

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:20 (2019),  15–17
  24. Hybrid solar cells with a sunlight concentrator system

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:16 (2019),  52–54
  25. A study of ohmic contacts of power photovoltaic converters

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:1 (2019),  12–15
  26. Influence of the ohmic contact structure on the performance of GaAs/AlGaAs photovoltaic converters

    Zhurnal Tekhnicheskoi Fiziki, 88:8 (2018),  1211–1215
  27. AlGaAs/GaAs photovoltaic converters of tritium radioluminescent-lamp radiation

    Fizika i Tekhnika Poluprovodnikov, 52:13 (2018),  1647–1650
  28. An antireflection coating of a germanium subcell in GaInP/GaAs/Ge solar cells

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:22 (2018),  95–101
  29. Thermal characteristics of high-efficiency photovoltaic converters of high-power laser light

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:21 (2018),  105–110
  30. High-efficiency AlGaAs/GaAs photovoltaic converters with edge input of laser light

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:17 (2018),  42–48
  31. On the main photoelectric characteristics of three-junction InGaP/InGaAs/Ge solar cells in a broad temperature range (-197 $\le T\le$ +85$^\circ$C)

    Fizika i Tekhnika Poluprovodnikov, 50:10 (2016),  1374–1379
  32. GaSb laser-power ($\lambda$ = 1550 nm) converters: Fabrication method and characteristics

    Fizika i Tekhnika Poluprovodnikov, 50:10 (2016),  1358–1362
  33. Photovoltaic laser-power converter based on AlGaAs/GaAs heterostructures

    Fizika i Tekhnika Poluprovodnikov, 50:9 (2016),  1242–1246
  34. Photovoltaic converters of concentrated sunlight, based on InGaAsP(1.0 eV)/InP heterostructures

    Fizika i Tekhnika Poluprovodnikov, 49:5 (2015),  715–718
  35. New-generation concentrator modules based on cascade solar cells: Design and optical and thermal properties

    Zhurnal Tekhnicheskoi Fiziki, 84:11 (2014),  72–79
  36. Dark current-voltage characteristic of triple-junction solar cells: Their relation with the efficiency and the influence of passivating treatments

    Zhurnal Tekhnicheskoi Fiziki, 84:6 (2014),  92–97
  37. Effect of postgrowth techniques on the characteristics of triple-junction InGaP/Ga(In)As/Ge solar cells

    Fizika i Tekhnika Poluprovodnikov, 48:9 (2014),  1249–1253
  38. Photovoltaic modules with cylindrical waveguides in a system for the secondary concentration of solar radiation

    Zhurnal Tekhnicheskoi Fiziki, 83:9 (2013),  84–89
  39. Spectral-splitting concentrator photovoltaic modules based on AlGaAs/GaAs/GaSb and GaInP/InGaAs(P) solar cells

    Zhurnal Tekhnicheskoi Fiziki, 83:7 (2013),  106–110
  40. Fabrication and study of $p$$n$ structures with crystalline inclusions in the space-charge region

    Fizika i Tekhnika Poluprovodnikov, 47:12 (2013),  1677–1680
  41. High-efficiency GaSb photocells

    Fizika i Tekhnika Poluprovodnikov, 47:2 (2013),  273–279
  42. Evaluation of the conversion efficiency of thin-film single-junction ($a$-Si:H) and tandem ($\mu c$-Si:H + $a$-Si:H) solar cells by analysis of the experimental dark and load current-voltage (I–V) characteristics

    Fizika i Tekhnika Poluprovodnikov, 46:7 (2012),  952–959
  43. High-efficiency ($\eta$ = 39.6%, AM 1.5D) cascade of photoconverters in solar splitting systems

    Fizika i Tekhnika Poluprovodnikov, 45:6 (2011),  810–815
  44. Parameter optimization of solar modules based on lens concentrators of radiation and cascade photovoltaic converters

    Zhurnal Tekhnicheskoi Fiziki, 80:2 (2010),  118–125
  45. Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells

    Fizika i Tekhnika Poluprovodnikov, 44:11 (2010),  1568–1576
  46. Gas-fired thermophotovoltaic generator based on metallic emitters and GaSb cells

    Fizika i Tekhnika Poluprovodnikov, 44:9 (2010),  1284–1289
  47. Study of minority carrier diffusion lengths in photoactive layers of multijunction solar cells

    Fizika i Tekhnika Poluprovodnikov, 44:8 (2010),  1118–1123
  48. Thermophotovoltaic generators based on gallium antimonide

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  270–277
  49. Highly efficient photovoltaic cells based on In$_{0.53}$Ga$_{0.47}$As alloys with isovalent doping

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  240–245


© Steklov Math. Inst. of RAS, 2026