RUS  ENG
Full version
PEOPLE

Myslivets Simona Glebovna

Publications in Math-Net.Ru

  1. The Bochner–Martinelli integral operator for real analytic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 7,  53–63
  2. On some properties of one Cauchy–Fantappiè integral operator

    J. Sib. Fed. Univ. Math. Phys., 18:5 (2025),  630–643
  3. On one integral representation of the potential type

    J. Sib. Fed. Univ. Math. Phys., 18:3 (2025),  293–299
  4. On some conditions for the existence of a holomorphic continuation of functions in a ball

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:2 (2025),  231–246
  5. Integral operator of potential type for infinitely differentiable functions

    J. Sib. Fed. Univ. Math. Phys., 17:4 (2024),  464–469
  6. On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:3 (2023),  483–496
  7. On the multidimensional boundary analogue of the Morera theorem

    J. Sib. Fed. Univ. Math. Phys., 15:1 (2022),  29–45
  8. On functions with the boundary Morera property in domains with piecewise-smooth boundary

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:1 (2021),  50–58
  9. On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain

    Ufimsk. Mat. Zh., 12:3 (2020),  45–50
  10. On the Szegö and Poisson kernels in the convex domains in $\mathbb{C}^n$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 1,  42–48
  11. Functions with the one-dimensional holomorphic extension property

    J. Sib. Fed. Univ. Math. Phys., 12:4 (2019),  439–443
  12. Construction of Szegő and Poisson kernels in convex domains

    J. Sib. Fed. Univ. Math. Phys., 11:6 (2018),  792–795
  13. Multidimensional boundary analog of the Hartogs theorem in circular domains

    J. Sib. Fed. Univ. Math. Phys., 11:1 (2018),  79–90
  14. Holomorphic extension of functions along finite families of complex straight lines in an $n$-circular domain

    Sibirsk. Mat. Zh., 57:4 (2016),  792–808
  15. Holomorphic extension of continuous functions along finite families of complex lines in a ball

    J. Sib. Fed. Univ. Math. Phys., 8:3 (2015),  291–302
  16. Holomorphic continuation of functions along finite families of complex lines in the ball

    J. Sib. Fed. Univ. Math. Phys., 5:4 (2012),  547–557
  17. On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain

    J. Sib. Fed. Univ. Math. Phys., 5:2 (2012),  213–222
  18. Some families of complex lines sufficient for holomorphic continuation of functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 4,  72–80
  19. Minimal dimension families of complex lines sufficient for holomorphic extension of functions

    Sibirsk. Mat. Zh., 52:2 (2011),  326–339
  20. Iterates of the Bochner–Martinelli Integral Operator in a Ball

    J. Sib. Fed. Univ. Math. Phys., 2:2 (2009),  137–145
  21. Conditions for the $\overline\partial$-closedness of differential forms

    Sibirsk. Mat. Zh., 50:6 (2009),  1333–1347
  22. On Asymptotic Expansion of the Conormal Symbol of the Singular Bochner-Martinelli Operator on the Surfaces with Singular Points

    J. Sib. Fed. Univ. Math. Phys., 1:1 (2008),  3–12
  23. On Families of Complex Lines Sufficient for Holomorphic Extension

    Mat. Zametki, 83:4 (2008),  545–551
  24. On the zeta-function of systems of nonlinear equations

    Sibirsk. Mat. Zh., 48:5 (2007),  1073–1082
  25. Bochner–Martinelli singular integral operator on the hypersurfaces with singular points

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007),  3–18
  26. Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 108 (2006),  67–105
  27. On the Cauchy principal value of the Khenkin–Ramirez singular integral in strictly pseudoconvex domains of`$\mathbb C^n$

    Sibirsk. Mat. Zh., 46:3 (2005),  625–633
  28. On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds

    Mat. Sb., 195:12 (2004),  57–80
  29. On construction of exact complexes connected with the Dolbeault complex

    Sibirsk. Mat. Zh., 44:4 (2003),  779–799
  30. The analytic representation of $CR$ functions on the hypersurfaces with singularities

    Fundam. Prikl. Mat., 8:4 (2002),  1069–1090
  31. Boundary behavior of an integral of logarithmic residue type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 4,  45–50
  32. On a boundary version of Morera's theorem

    Sibirsk. Mat. Zh., 42:5 (2001),  1136–1146
  33. On a multidimensional boundary variant of the Morera theorem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 8,  33–36
  34. On a boundary Morera theorem for classical domains

    Sibirsk. Mat. Zh., 40:3 (1999),  595–604
  35. On the holomorphicity of functions representable by the logarithmic residue formula

    Sibirsk. Mat. Zh., 38:2 (1997),  351–361
  36. On a certain boundary analog of Morera's theorem

    Sibirsk. Mat. Zh., 36:6 (1995),  1350–1353
  37. A criterion for local solvability of partial differential equations with constant coefficients

    Sibirsk. Mat. Zh., 29:2 (1988),  70–74
  38. Existence of a solution holomorphic in the domain $D\subset\mathbf{C}^n$ of an infinite-order differential equation with constant coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 12,  33–37


© Steklov Math. Inst. of RAS, 2026