RUS  ENG
Full version
PEOPLE

Ivanov Valery Vladimirovich

Publications in Math-Net.Ru

  1. The change of crystal chemical topology of the basic module for some structural type as the receiving method of the corresponding modular structures

    Meždunar. nauč.-issled. žurn., 2014, no. 1(20),  33–35
  2. “Soft” modification of the packing law for basic module as one of the way of a new module's structures receiving

    Meždunar. nauč.-issled. žurn., 2014, no. 1(20),  32–33
  3. Some homological correlations and topologic transformations of the possible modular hyper-cells

    Meždunar. nauč.-issled. žurn., 2013, no. 8(15),  27–30
  4. Probably izosymmetric and deformational modifications of deterministic modular structures from FV, F(IC(1/2)) and F(CM(1/3)) fractals in 2D space on square net

    Meždunar. nauč.-issled. žurn., 2013, no. 8(15),  25–27
  5. Principles of the regular simple fractal structures formation

    Meždunar. nauč.-issled. žurn., 2013, no. 7(14),  35–37
  6. Hypercompact deterministic hybrid structures based on some multitude interpenetrating fractal sub-lattices on square net

    Meždunar. nauč.-issled. žurn., 2013, no. 7(14),  33–35
  7. Deterministic fractals based on cantor’s multitude and iterative successive of points in 2D space

    Meždunar. nauč.-issled. žurn., 2013, no. 7(14),  31–33
  8. Compact deterministic hybrid structures based on two interpenetrating fractal sub-lattices on square net

    Meždunar. nauč.-issled. žurn., 2013, no. 7(14),  30–31
  9. Deterministic fractals based on iterative successive of points in 2D space

    Meždunar. nauč.-issled. žurn., 2013, no. 7(14),  28–30
  10. Possible structural states of deterministic modular structures with fractal component in 2D space

    Meždunar. nauč.-issled. žurn., 2013, no. 7(14),  26–28
  11. Symbolical description of structural types of crystals

    Nanosystems: Physics, Chemistry, Mathematics, 3:4 (2012),  82–100
  12. Information and structures: modular design of nanostructures and the fractal structures into 2D space

    Nanosystems: Physics, Chemistry, Mathematics, 2:3 (2011),  121–134
  13. Principle of modular building of nanostructures: the information codes and the combinatorial design

    Nanosystems: Physics, Chemistry, Mathematics, 1:1 (2010),  72–107


© Steklov Math. Inst. of RAS, 2026